![show/hide quicksearch [+]](./images/find.png)
The Process module is a collection of methods used to
manipulate processes.
Terminate execution immediately, effectively by calling
Kernel.exit(1). If msg is given, it is written to
STDERR prior to terminating.
 
               VALUE
rb_f_abort(int argc, VALUE *argv)
{
    extern void ruby_error_print(void);
    rb_secure(4);
    if (argc == 0) {
        if (!NIL_P(GET_THREAD()->errinfo)) {
            ruby_error_print();
        }
        rb_exit(EXIT_FAILURE);
    }
    else {
        VALUE args[2];
        rb_scan_args(argc, argv, "1", &args[1]);
        StringValue(argv[0]);
        rb_io_puts(argc, argv, rb_stderr);
        args[0] = INT2NUM(EXIT_FAILURE);
        rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit));
    }
    return Qnil;                /* not reached */
}
             
            Detach the process from controlling terminal and run in the background as system daemon. Unless the argument nochdir is true (i.e. non false), it changes the current working directory to the root (“/”). Unless the argument noclose is true, daemon() will redirect standard input, standard output and standard error to /dev/null.
 
               static VALUE
proc_daemon(int argc, VALUE *argv)
{
    VALUE nochdir, noclose;
#if defined(HAVE_DAEMON) || defined(HAVE_FORK)
    int n;
#endif
    rb_secure(2);
    rb_scan_args(argc, argv, "02", &nochdir, &noclose);
#if defined(HAVE_DAEMON)
    prefork();
    before_fork();
    n = daemon(RTEST(nochdir), RTEST(noclose));
    after_fork();
    if (n < 0) rb_sys_fail("daemon");
    return INT2FIX(n);
#elif defined(HAVE_FORK)
    switch (rb_fork(0, 0, 0, Qnil)) {
      case -1:
        return INT2FIX(-1);
      case 0:
        break;
      default:
        _exit(0);
    }
    proc_setsid();
    /* must not be process-leader */
    switch (rb_fork(0, 0, 0, Qnil)) {
      case -1:
        return INT2FIX(-1);
      case 0:
        break;
      default:
        _exit(0);
    }
    if (!RTEST(nochdir))
        (void)chdir("/");
    if (!RTEST(noclose) && (n = open("/dev/null", O_RDWR, 0)) != -1) {
        (void)dup2(n, 0);
        (void)dup2(n, 1);
        (void)dup2(n, 2);
        if (n > 2)
            (void)close (n);
    }
    return INT2FIX(0);
#else
    rb_notimplement();
#endif
}
             
            Some operating systems retain the status of terminated child processes
until the parent collects that status (normally using some variant of
wait(). If the parent never collects this status, the child
stays around as a zombie process. Process::detach
prevents this by setting up a separate Ruby thread whose sole job is to
reap the status of the process pid when it terminates. Use
detach only when you do not intent to explicitly wait for the
child to terminate.
The waiting thread returns the exit status of the detached process when it
terminates, so you can use Thread#join to know the result.  If
specified pid is not a valid child process ID, the thread returns
nil immediately.
In this first example, we don't reap the first child process, so it appears as a zombie in the process status display.
p1 = fork { sleep 0.1 } p2 = fork { sleep 0.2 } Process.waitpid(p2) sleep 2 system("ps -ho pid,state -p #{p1}")
produces:
27389 Z
In the next example, Process::detach is used to reap the child
automatically.
p1 = fork { sleep 0.1 } p2 = fork { sleep 0.2 } Process.detach(p1) Process.waitpid(p2) sleep 2 system("ps -ho pid,state -p #{p1}")
(produces no output)
 
               static VALUE
proc_detach(VALUE obj, VALUE pid)
{
    rb_secure(2);
    return rb_detach_process(NUM2PIDT(pid));
}
             
            Returns the effective group ID for this process. Not available on all platforms.
Process.egid #=> 500
 
               static VALUE
proc_getegid(VALUE obj)
{
    rb_gid_t egid = getegid();
    return GIDT2NUM(egid);
}
             
            Sets the effective group ID for this process. Not available on all platforms.
 
               static VALUE
proc_setegid(VALUE obj, VALUE egid)
{
    rb_gid_t gid;
    check_gid_switch();
    gid = NUM2GIDT(egid);
#if defined(HAVE_SETRESGID) && !defined(__CHECKER__)
    if (setresgid(-1, gid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREGID
    if (setregid(-1, gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETEGID
    if (setegid(gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
    if (gid == getgid()) {
        if (setgid(gid) < 0) rb_sys_fail(0);
    }
    else {
        rb_notimplement();
    }
#else
    rb_notimplement();
#endif
    return egid;
}
             
            Returns the effective user ID for this process.
Process.euid #=> 501
 
               static VALUE
proc_geteuid(VALUE obj)
{
    rb_uid_t euid = geteuid();
    return UIDT2NUM(euid);
}
             
            Sets the effective user ID for this process. Not available on all platforms.
 
               static VALUE
proc_seteuid(VALUE obj, VALUE euid)
{
    rb_uid_t uid;
    check_uid_switch();
    uid = NUM2UIDT(euid);
#if defined(HAVE_SETRESUID) && !defined(__CHECKER__)
    if (setresuid(-1, uid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREUID
    if (setreuid(-1, uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETEUID
    if (seteuid(uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
    if (uid == getuid()) {
        if (setuid(uid) < 0) rb_sys_fail(0);
    }
    else {
        rb_notimplement();
    }
#else
    rb_notimplement();
#endif
    return euid;
}
             
            Replaces the current process by running the given external
command. If optional arguments, sequence of arg, are
not given, that argument is taken as a line that is subject to shell
expansion before being executed. If one or more arg given,
they are passed as parameters to command with no shell expansion.
If command is a two-element array, the first element is the
command to be executed, and the second argument is used as the
argv[0] value, which may show up in process listings. In order
to execute the command, one of the exec(2)  system calls is
used, so the running command may inherit some of the environment  of the
original program (including open file descriptors).
The hash arguments, env and options, are same as system and
spawn. See spawn for details.
Raises SystemCallError if the
command couldn't execute (typically Errno::ENOENT
when it was not found).
exec "echo *" # echoes list of files in current directory # never get here exec "echo", "*" # echoes an asterisk # never get here
 
               VALUE
rb_f_exec(int argc, VALUE *argv)
{
    struct rb_exec_arg earg;
    rb_exec_arg_init(argc, argv, Qtrue, &earg);
    if (NIL_P(rb_ary_entry(earg.options, EXEC_OPTION_CLOSE_OTHERS)))
        rb_exec_arg_addopt(&earg, ID2SYM(rb_intern("close_others")), Qfalse);
    rb_exec_arg_fixup(&earg);
    rb_exec(&earg);
    rb_sys_fail(earg.prog);
    return Qnil;                /* dummy */
}
             
            Initiates the termination of the Ruby script by raising the
SystemExit exception. This exception may be caught. The
optional parameter is used to return a status code to the invoking
environment.
begin exit puts "never get here" rescue SystemExit puts "rescued a SystemExit exception" end puts "after begin block"
produces:
rescued a SystemExit exception after begin block
Just prior to termination, Ruby executes any at_exit functions
(see Kernel::at_exit) and runs any object finalizers (see ObjectSpace.define_finalizer).
at_exit { puts "at_exit function" } ObjectSpace.define_finalizer("string", proc { puts "in finalizer" }) exit
produces:
at_exit function in finalizer
 
               VALUE
rb_f_exit(int argc, VALUE *argv)
{
    VALUE status;
    int istatus;
    rb_secure(4);
    if (argc > 0 && rb_scan_args(argc, argv, "01", &status) == 1) {
        switch (status) {
          case Qtrue:
            istatus = EXIT_SUCCESS;
            break;
          case Qfalse:
            istatus = EXIT_FAILURE;
            break;
          default:
            istatus = NUM2INT(status);
#if EXIT_SUCCESS != 0
            if (istatus == 0)
                istatus = EXIT_SUCCESS;
#endif
            break;
        }
    }
    else {
        istatus = EXIT_SUCCESS;
    }
    rb_exit(istatus);
    return Qnil;                /* not reached */
}
             
            Exits the process immediately. No exit handlers are run. fixnum is returned to the underlying system as the exit status.
Process.exit!(0)
 
               static VALUE
rb_f_exit_bang(int argc, VALUE *argv, VALUE obj)
{
    VALUE status;
    int istatus;
    rb_secure(4);
    if (argc > 0 && rb_scan_args(argc, argv, "01", &status) == 1) {
        switch (status) {
          case Qtrue:
            istatus = EXIT_SUCCESS;
            break;
          case Qfalse:
            istatus = EXIT_FAILURE;
            break;
          default:
            istatus = NUM2INT(status);
            break;
        }
    }
    else {
        istatus = EXIT_FAILURE;
    }
    _exit(istatus);
    return Qnil;                /* not reached */
}
             
            Creates a subprocess. If a block is specified, that block is run in the
subprocess, and the subprocess terminates with a status of zero. Otherwise,
the fork call returns twice, once in the parent, returning the
process ID of the child, and once in the child, returning nil. The
child process can exit using Kernel.exit! to avoid running any
at_exit functions. The parent process should use
Process.wait to collect the termination statuses of its
children or use Process.detach to register disinterest in
their status; otherwise, the operating system may accumulate zombie
processes.
The thread calling fork is the only thread in the created child process. fork doesn't copy other threads.
 
               static VALUE
rb_f_fork(VALUE obj)
{
#if defined(HAVE_FORK) && !defined(CANNOT_FORK_WITH_PTHREAD)
    rb_pid_t pid;
    rb_secure(2);
    switch (pid = rb_fork(0, 0, 0, Qnil)) {
      case 0:
#ifdef linux
        after_exec();
#endif
        rb_thread_atfork();
        if (rb_block_given_p()) {
            int status;
            rb_protect(rb_yield, Qundef, &status);
            ruby_stop(status);
        }
        return Qnil;
      case -1:
        rb_sys_fail("fork(2)");
        return Qnil;
      default:
        return PIDT2NUM(pid);
    }
#else
    rb_notimplement();
#endif
}
             
            Returns the process group ID for the given process id. Not available on all platforms.
Process.getpgid(Process.ppid()) #=> 25527
 
               static VALUE
proc_getpgid(VALUE obj, VALUE pid)
{
#if defined(HAVE_GETPGID) && !defined(__CHECKER__)
    rb_pid_t i;
    rb_secure(2);
    i = getpgid(NUM2PIDT(pid));
    if (i < 0) rb_sys_fail(0);
    return PIDT2NUM(i);
#else
    rb_notimplement();
#endif
}
             
            Returns the process group ID for this process. Not available on all platforms.
Process.getpgid(0) #=> 25527 Process.getpgrp #=> 25527
 
               static VALUE
proc_getpgrp(void)
{
#if defined(HAVE_GETPGRP) && defined(GETPGRP_VOID) || defined(HAVE_GETPGID)
    rb_pid_t pgrp;
#endif
    rb_secure(2);
#if defined(HAVE_GETPGRP) && defined(GETPGRP_VOID)
    pgrp = getpgrp();
    if (pgrp < 0) rb_sys_fail(0);
    return PIDT2NUM(pgrp);
#else
# ifdef HAVE_GETPGID
    pgrp = getpgid(0);
    if (pgrp < 0) rb_sys_fail(0);
    return PIDT2NUM(pgrp);
# else
    rb_notimplement();
# endif
#endif
}
             
            Gets the scheduling priority for specified process, process group, or user.
kind indicates the kind of entity to find: one of
Process::PRIO_PGRP, Process::PRIO_USER, or
Process::PRIO_PROCESS. integer is an id indicating
the particular process, process group, or user (an id of 0 means
current). Lower priorities are more favorable for scheduling. Not
available on all platforms.
Process.getpriority(Process::PRIO_USER, 0) #=> 19 Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19
 
               static VALUE
proc_getpriority(VALUE obj, VALUE which, VALUE who)
{
#ifdef HAVE_GETPRIORITY
    int prio, iwhich, iwho;
    rb_secure(2);
    iwhich = NUM2INT(which);
    iwho   = NUM2INT(who);
    errno = 0;
    prio = getpriority(iwhich, iwho);
    if (errno) rb_sys_fail(0);
    return INT2FIX(prio);
#else
    rb_notimplement();
#endif
}
             
            Gets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.
resource indicates the kind of resource to limit. It is specified
as a symbol such as :CORE, a string such as
"CORE" or a constant such as
Process::RLIMIT_CORE. See ::setrlimit for details.
cur_limit and max_limit may be
Process::RLIM_INFINITY, Process::RLIM_SAVED_MAX
or Process::RLIM_SAVED_CUR. See ::setrlimit and the system
getrlimit(2) manual for details.
 
               static VALUE
proc_getrlimit(VALUE obj, VALUE resource)
{
#if defined(HAVE_GETRLIMIT) && defined(RLIM2NUM)
    struct rlimit rlim;
    rb_secure(2);
    if (getrlimit(rlimit_resource_type(resource), &rlim) < 0) {
        rb_sys_fail("getrlimit");
    }
    return rb_assoc_new(RLIM2NUM(rlim.rlim_cur), RLIM2NUM(rlim.rlim_max));
#else
    rb_notimplement();
#endif
}
             
            Returns the (real) group ID for this process.
Process.gid #=> 500
 
               static VALUE
proc_getgid(VALUE obj)
{
    rb_gid_t gid = getgid();
    return GIDT2NUM(gid);
}
             
            Sets the group ID for this process.
 
               static VALUE
proc_setgid(VALUE obj, VALUE id)
{
    rb_gid_t gid;
    check_gid_switch();
    gid = NUM2GIDT(id);
#if defined(HAVE_SETRESGID) && !defined(__CHECKER__)
    if (setresgid(gid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREGID
    if (setregid(gid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRGID
    if (setrgid(gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
    {
        if (getegid() == gid) {
            if (setgid(gid) < 0) rb_sys_fail(0);
        }
        else {
            rb_notimplement();
        }
    }
#else
    rb_notimplement();
#endif
    return GIDT2NUM(gid);
}
             
            Get an Array of the gids of groups in the supplemental group
access list for this process.
Process.groups #=> [27, 6, 10, 11]
 
               static VALUE
proc_getgroups(VALUE obj)
{
#ifdef HAVE_GETGROUPS
    VALUE ary;
    size_t ngroups;
    rb_gid_t *groups;
    int i;
    groups = ALLOCA_N(rb_gid_t, maxgroups);
    ngroups = getgroups(maxgroups, groups);
    if (ngroups == -1)
        rb_sys_fail(0);
    ary = rb_ary_new();
    for (i = 0; i < ngroups; i++)
        rb_ary_push(ary, GIDT2NUM(groups[i]));
    return ary;
#else
    rb_notimplement();
    return Qnil;
#endif
}
             
            Set the supplemental group access list to the given Array of
group IDs.
Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27] Process.groups = [27, 6, 10, 11] #=> [27, 6, 10, 11] Process.groups #=> [27, 6, 10, 11]
 
               static VALUE
proc_setgroups(VALUE obj, VALUE ary)
{
#ifdef HAVE_SETGROUPS
    size_t ngroups;
    rb_gid_t *groups;
    int i;
    struct group *gr;
    Check_Type(ary, T_ARRAY);
    ngroups = RARRAY_LEN(ary);
    if (ngroups > maxgroups)
        rb_raise(rb_eArgError, "too many groups, %lu max", (unsigned long)maxgroups);
    groups = ALLOCA_N(rb_gid_t, ngroups);
    for (i = 0; i < ngroups && i < RARRAY_LEN(ary); i++) {
        VALUE g = RARRAY_PTR(ary)[i];
        if (FIXNUM_P(g)) {
            groups[i] = NUM2GIDT(g);
        }
        else {
            VALUE tmp = rb_check_string_type(g);
            if (NIL_P(tmp)) {
                groups[i] = NUM2GIDT(g);
            }
            else {
                gr = getgrnam(RSTRING_PTR(tmp));
                if (gr == NULL)
                    rb_raise(rb_eArgError,
                             "can't find group for %s", RSTRING_PTR(tmp));
                groups[i] = gr->gr_gid;
            }
        }
    }
    i = setgroups(ngroups, groups);
    if (i == -1)
        rb_sys_fail(0);
    return proc_getgroups(obj);
#else
    rb_notimplement();
    return Qnil;
#endif
}
             
            Initializes the supplemental group access list by reading the system group
database and using all groups of which the given user is a member. The
group with the specified gid is also added to the list. Returns
the resulting Array of the gids of all the groups in the
supplementary group access list. Not available on all platforms.
Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27] Process.initgroups( "mgranger", 30 ) #=> [30, 6, 10, 11] Process.groups #=> [30, 6, 10, 11]
 
               static VALUE
proc_initgroups(VALUE obj, VALUE uname, VALUE base_grp)
{
#ifdef HAVE_INITGROUPS
    if (initgroups(StringValuePtr(uname), NUM2GIDT(base_grp)) != 0) {
        rb_sys_fail(0);
    }
    return proc_getgroups(obj);
#else
    rb_notimplement();
    return Qnil;
#endif
}
             
            Sends the given signal to the specified process id(s), or to the current
process if pid is zero. signal may be an integer signal
number or a POSIX signal name (either with or without a SIG
prefix). If signal is negative (or starts with a minus sign),
kills process groups instead of processes. Not all signals are available on
all platforms.
pid = fork do Signal.trap("HUP") { puts "Ouch!"; exit } # ... do some work ... end # ... Process.kill("HUP", pid) Process.wait
produces:
Ouch!
            
            
             
               VALUE
rb_f_kill(int argc, VALUE *argv)
{
#ifndef HAS_KILLPG
#define killpg(pg, sig) kill(-(pg), sig)
#endif
    int negative = 0;
    int sig;
    int i;
    const char *s;
    rb_secure(2);
    if (argc < 2)
	rb_raise(rb_eArgError, "wrong number of arguments -- kill(sig, pid...)");
    switch (TYPE(argv[0])) {
      case T_FIXNUM:
	sig = FIX2INT(argv[0]);
	break;
      case T_SYMBOL:
	s = rb_id2name(SYM2ID(argv[0]));
	if (!s) rb_raise(rb_eArgError, "bad signal");
	goto str_signal;
      case T_STRING:
	s = RSTRING_PTR(argv[0]);
	if (s[0] == '-') {
	    negative++;
	    s++;
	}
      str_signal:
	if (strncmp("SIG", s, 3) == 0)
	    s += 3;
	if((sig = signm2signo(s)) == 0)
	    rb_raise(rb_eArgError, "unsupported name `SIG%s'", s);
	if (negative)
	    sig = -sig;
	break;
      default:
        {
	    VALUE str;
	    str = rb_check_string_type(argv[0]);
	    if (!NIL_P(str)) {
		s = RSTRING_PTR(str);
		goto str_signal;
	    }
	    rb_raise(rb_eArgError, "bad signal type %s",
		     rb_obj_classname(argv[0]));
	}
	break;
    }
    if (sig < 0) {
	sig = -sig;
	for (i=1; i<argc; i++) {
	    if (killpg(NUM2PIDT(argv[i]), sig) < 0)
		rb_sys_fail(0);
	}
    }
    else {
	for (i=1; i<argc; i++) {
	    if (kill(NUM2PIDT(argv[i]), sig) < 0)
		rb_sys_fail(0);
	}
    }
    rb_thread_polling();
    return INT2FIX(i-1);
}
             
            Returns the maximum number of gids allowed in the supplemental group access list.
Process.maxgroups #=> 32
 
               static VALUE
proc_getmaxgroups(VALUE obj)
{
    return INT2FIX(maxgroups);
}
             
            Sets the maximum number of gids allowed in the supplemental group access list.
 
               static VALUE
proc_setmaxgroups(VALUE obj, VALUE val)
{
    size_t  ngroups = FIX2INT(val);
    if (ngroups > 4096)
        ngroups = 4096;
    maxgroups = ngroups;
    return INT2FIX(maxgroups);
}
             
            Returns the process id of this process. Not available on all platforms.
Process.pid #=> 27415
 
               static VALUE
get_pid(void)
{
    rb_secure(2);
    return PIDT2NUM(getpid());
}
             
            Returns the process id of the parent of this process. Returns untrustworthy value on Win32/64. Not available on all platforms.
puts "I am #{Process.pid}" Process.fork { puts "Dad is #{Process.ppid}" }
produces:
I am 27417 Dad is 27417
 
               static VALUE
get_ppid(void)
{
    rb_secure(2);
    return PIDT2NUM(getppid());
}
             
            Sets the process group ID of pid (0 indicates this process) to integer. Not available on all platforms.
 
               static VALUE
proc_setpgid(VALUE obj, VALUE pid, VALUE pgrp)
{
#ifdef HAVE_SETPGID
    rb_pid_t ipid, ipgrp;
    rb_secure(2);
    ipid = NUM2PIDT(pid);
    ipgrp = NUM2PIDT(pgrp);
    if (setpgid(ipid, ipgrp) < 0) rb_sys_fail(0);
    return INT2FIX(0);
#else
    rb_notimplement();
#endif
}
             
            Equivalent to setpgid(0,0). Not available on all platforms.
 
               static VALUE
proc_setpgrp(void)
{
    rb_secure(2);
  /* check for posix setpgid() first; this matches the posix */
  /* getpgrp() above.  It appears that configure will set SETPGRP_VOID */
  /* even though setpgrp(0,0) would be preferred. The posix call avoids */
  /* this confusion. */
#ifdef HAVE_SETPGID
    if (setpgid(0,0) < 0) rb_sys_fail(0);
#elif defined(HAVE_SETPGRP) && defined(SETPGRP_VOID)
    if (setpgrp() < 0) rb_sys_fail(0);
#else
    rb_notimplement();
#endif
    return INT2FIX(0);
}
             
            See Process#getpriority.
Process.setpriority(Process::PRIO_USER, 0, 19) #=> 0 Process.setpriority(Process::PRIO_PROCESS, 0, 19) #=> 0 Process.getpriority(Process::PRIO_USER, 0) #=> 19 Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19
 
               static VALUE
proc_setpriority(VALUE obj, VALUE which, VALUE who, VALUE prio)
{
#ifdef HAVE_GETPRIORITY
    int iwhich, iwho, iprio;
    rb_secure(2);
    iwhich = NUM2INT(which);
    iwho   = NUM2INT(who);
    iprio  = NUM2INT(prio);
    if (setpriority(iwhich, iwho, iprio) < 0)
        rb_sys_fail(0);
    return INT2FIX(0);
#else
    rb_notimplement();
#endif
}
             
            Sets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.
If max_limit is not given, cur_limit is used.
resource indicates the kind of resource to limit. It should be a
symbol such as :CORE, a string such as
"CORE" or a constant such as
Process::RLIMIT_CORE. The available resources are OS
dependent. Ruby may support following resources.
core size (bytes) (SUSv3)
CPU time (seconds) (SUSv3)
data segment (bytes) (SUSv3)
file size (bytes) (SUSv3)
file descriptors (number) (SUSv3)
stack size (bytes) (SUSv3)
total available memory (bytes) (SUSv3, NetBSD, FreeBSD, OpenBSD but 4.4BSD-Lite)
total size for mlock(2) (bytes) (4.4BSD, GNU/Linux)
number of processes for the user (number) (4.4BSD, GNU/Linux)
resident memory size (bytes) (4.2BSD, GNU/Linux)
all socket buffers (bytes) (NetBSD, FreeBSD)
cur_limit and max_limit may be :INFINITY,
"INFINITY" or Process::RLIM_INFINITY,
which means that the resource is not limited. They may be
Process::RLIM_SAVED_MAX, Process::RLIM_SAVED_CUR
and corresponding symbols and strings too. See system setrlimit(2) manual
for details.
The following example raise the soft limit of core size to the hard limit to try to make core dump possible.
Process.setrlimit(:CORE, Process.getrlimit(:CORE)[1])
 
               static VALUE
proc_setrlimit(int argc, VALUE *argv, VALUE obj)
{
#if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM)
    VALUE resource, rlim_cur, rlim_max;
    struct rlimit rlim;
    rb_secure(2);
    rb_scan_args(argc, argv, "21", &resource, &rlim_cur, &rlim_max);
    if (rlim_max == Qnil)
        rlim_max = rlim_cur;
    rlim.rlim_cur = rlimit_resource_value(rlim_cur);
    rlim.rlim_max = rlimit_resource_value(rlim_max);
    if (setrlimit(rlimit_resource_type(resource), &rlim) < 0) {
        rb_sys_fail("setrlimit");
    }
    return Qnil;
#else
    rb_notimplement();
#endif
}
             
            Establishes this process as a new session and process group leader, with no controlling tty. Returns the session id. Not available on all platforms.
Process.setsid #=> 27422
 
               static VALUE
proc_setsid(void)
{
#if defined(HAVE_SETSID)
    rb_pid_t pid;
    rb_secure(2);
    pid = setsid();
    if (pid < 0) rb_sys_fail(0);
    return PIDT2NUM(pid);
#elif defined(HAVE_SETPGRP) && defined(TIOCNOTTY)
    rb_pid_t pid;
    int ret;
    rb_secure(2);
    pid = getpid();
#if defined(SETPGRP_VOID)
    ret = setpgrp();
    /* If `pid_t setpgrp(void)' is equivalent to setsid(),
       `ret' will be the same value as `pid', and following open() will fail.
       In Linux, `int setpgrp(void)' is equivalent to setpgid(0, 0). */
#else
    ret = setpgrp(0, pid);
#endif
    if (ret == -1) rb_sys_fail(0);
    if ((fd = open("/dev/tty", O_RDWR)) >= 0) {
        ioctl(fd, TIOCNOTTY, NULL);
        close(fd);
    }
    return PIDT2NUM(pid);
#else
    rb_notimplement();
#endif
}
             
            Similar to Kernel::system except for not waiting for end of
cmd, but returns its pid.
If a hash is given as env, the environment is updated by
env before exec(2) in the child process. If a
pair in env has nil as the value, the variable is deleted.
# set FOO as BAR and unset BAZ. pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command)
If a hash is given as options, it specifies process group,
resource limit,  current directory, umask and redirects for the child
process. Also, it can be specified to clear environment variables.
The :unsetenv_others key in options specifies to
clear environment variables, other than specified by env.
pid = spawn(command, :unsetenv_others=>true) # no environment variable pid = spawn({"FOO"=>"BAR"}, command, :unsetenv_others=>true) # FOO only
The :pgroup key in options specifies a process
group. The corresponding value should be true, zero or positive integer.
true and zero means the process should be a process leader. Other values
specifies a process group to be belongs.
pid = spawn(command, :pgroup=>true) # process leader pid = spawn(command, :pgroup=>10) # belongs to the process group 10
The :rlimit_foo key specifies a resource limit.
foo should be one of resource types such as core The
corresponding value should be an integer or an array which have one or two
integers: same as cur_limit and max_limit arguments for ::setrlimit.
pid = spawn(command, :rlimit_core=>0) # never dump core. cur, max = Process.getrlimit(:CORE) pid = spawn(command, :rlimit_core=>[0,max]) # disable core temporary. pid = spawn(command, :rlimit_core=>max) # enable core dump
The :chdir key in options specifies the current
directory.
pid = spawn(command, :chdir=>"/var/tmp")
The :umask key in options specifies the umask.
pid = spawn(command, :umask=>077)
The :in, :out, :err, a fixnum, an IO and an array key specifies a redirect. The redirection maps a file descriptor in the child process.
For example, stderr can be merged into stdout:
pid = spawn(command, :err=>:out) pid = spawn(command, STDERR=>STDOUT) pid = spawn(command, 2=>1)
The hash keys specifies a file descriptor in the child process started by
spawn. :err, STDERR and 2 specifies the standard error stream.
The hash values specifies a file descriptor in the parent process which
invokes spawn. :out, STDOUT and 1 specifies the standard
output stream.
The standard output in the child process is not specified. So it is inherited from the parent process.
The standard input stream can be specifed by :in, STDIN and 0.
A filename can be specified as a hash value.
pid = spawn(command, STDIN=>"/dev/null") # read mode pid = spawn(command, STDOUT=>"/dev/null") # write mode pid = spawn(command, STDERR=>"log") # write mode pid = spawn(command, 3=>"/dev/null") # read mode
For standard output and standard error, it is opened in write mode. Otherwise read mode is used.
For specifying flags and permission of file creation explicitly, an array is used instead.
pid = spawn(command, STDIN=>["file"]) # read mode is assumed pid = spawn(command, STDIN=>["file", "r"]) pid = spawn(command, STDOUT=>["log", "w"]) # 0644 assumed pid = spawn(command, STDOUT=>["log", "w", 0600]) pid = spawn(command, STDOUT=>["log", File::WRONLY|File::EXCL|File::CREAT, 0600])
The array specifies a filename, flags and permission. The flags can be a string or an integer. If the flags is ommitted or nil, File::RDONLY is assumed. The permission should be an integer. If the permission is ommitted or nil, 0644 is assumed.
If an array of IOs and integers are specified as a hash key, all the elemetns are redirected.
# standard output and standard error is redirected to log file. pid = spawn(command, [STDOUT, STDERR]=>["log", "w"])
spawn closes all non-standard unspecified descriptors by default. The “standard” descriptors are 0, 1 and 2. This behavior is specified by :close_others option. :close_others doesn't affect the standard descriptors which are closed only if :close is specified explicitly.
pid = spawn(command, :close_others=>true) # close 3,4,5,... (default) pid = spawn(command, :close_others=>false) # don't close 3,4,5,...
:close_others is true by default for spawn and IO.popen.
So IO.pipe and spawn can be used as IO.popen.
# similar to r = IO.popen(command) r, w = IO.pipe pid = spawn(command, STDOUT=>w) # r, w is closed in the child process. w.close
:close is specified as a hash value to close a fd individualy.
f = open(foo) system(command, f=>:close) # don't inherit f.
It is also possible to exchange file descriptors.
pid = spawn(command, STDOUT=>STDERR, STDERR=>STDOUT)
The hash keys specify file descriptors in the child process. The hash
values specifies file descriptors in the parent process. So the above
specifies exchanging STDOUT and STDERR. Internally, spawn uses
an extra file descriptor to resolve such cyclic file descriptor mapping.
 
               static VALUE
rb_f_spawn(int argc, VALUE *argv)
{
    rb_pid_t pid;
    pid = rb_spawn(argc, argv);
    if (pid == -1) rb_sys_fail(RSTRING_PTR(argv[0]));
#if defined(HAVE_FORK) || defined(HAVE_SPAWNV)
    return PIDT2NUM(pid);
#else
    return Qnil;
#endif
}
             
            Returns a Tms structure (see Struct::Tms on page
388) that contains user and system CPU times for this process.
t = Process.times [ t.utime, t.stime ] #=> [0.0, 0.02]
 
               VALUE
rb_proc_times(VALUE obj)
{
#if defined(HAVE_TIMES) && !defined(__CHECKER__)
    const double hertz =
#ifdef HAVE__SC_CLK_TCK
        (double)sysconf(_SC_CLK_TCK);
#else
#ifndef HZ
# ifdef CLK_TCK
#   define HZ CLK_TCK
# else
#   define HZ 60
# endif
#endif /* HZ */
        HZ;
#endif
    struct tms buf;
    volatile VALUE utime, stime, cutime, sctime;
    times(&buf);
    return rb_struct_new(rb_cProcessTms,
                         utime = DBL2NUM(buf.tms_utime / hertz),
                         stime = DBL2NUM(buf.tms_stime / hertz),
                         cutime = DBL2NUM(buf.tms_cutime / hertz),
                         sctime = DBL2NUM(buf.tms_cstime / hertz));
#else
    rb_notimplement();
#endif
}
             
            Returns the (real) user ID of this process.
Process.uid #=> 501
 
               static VALUE
proc_getuid(VALUE obj)
{
    rb_uid_t uid = getuid();
    return UIDT2NUM(uid);
}
             
            Sets the (integer) user ID for this process. Not available on all platforms.
 
               static VALUE
proc_setuid(VALUE obj, VALUE id)
{
    rb_uid_t uid;
    check_uid_switch();
    uid = NUM2UIDT(id);
#if defined(HAVE_SETRESUID) &&  !defined(__CHECKER__)
    if (setresuid(uid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREUID
    if (setreuid(uid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRUID
    if (setruid(uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
    {
        if (geteuid() == uid) {
            if (setuid(uid) < 0) rb_sys_fail(0);
        }
        else {
            rb_notimplement();
        }
    }
#else
    rb_notimplement();
#endif
    return id;
}
             
            Waits for a child process to exit, returns its process id, and sets
$? to a Process::Status object containing
information on that process. Which child it waits on depends on the value
of pid:
Waits for the child whose process ID equals pid.
Waits for any child whose process group ID equals that of the calling process.
Waits for any child process (the default if no pid is given).
Waits for any child whose process group ID equals the absolute value of pid.
The flags argument may be a logical or of the flag values
Process::WNOHANG (do not block if no child available) or
Process::WUNTRACED (return stopped children that haven't
been reported). Not all flags are available on all platforms, but a flag
value of zero will work on all platforms.
Calling this method raises a SystemError if there are no child
processes. Not available on all platforms.
include Process fork { exit 99 } #=> 27429 wait #=> 27429 $?.exitstatus #=> 99 pid = fork { sleep 3 } #=> 27440 Time.now #=> 2008-03-08 19:56:16 +0900 waitpid(pid, Process::WNOHANG) #=> nil Time.now #=> 2008-03-08 19:56:16 +0900 waitpid(pid, 0) #=> 27440 Time.now #=> 2008-03-08 19:56:19 +0900
 
               static VALUE
proc_wait(int argc, VALUE *argv)
{
    VALUE vpid, vflags;
    rb_pid_t pid;
    int flags, status;
    rb_secure(2);
    flags = 0;
    if (argc == 0) {
        pid = -1;
    }
    else {
        rb_scan_args(argc, argv, "02", &vpid, &vflags);
        pid = NUM2PIDT(vpid);
        if (argc == 2 && !NIL_P(vflags)) {
            flags = NUM2UINT(vflags);
        }
    }
    if ((pid = rb_waitpid(pid, &status, flags)) < 0)
        rb_sys_fail(0);
    if (pid == 0) {
        rb_last_status_clear();
        return Qnil;
    }
    return PIDT2NUM(pid);
}
             
            Waits for a child process to exit (see ::waitpid for exact semantics) and
returns an array containing the process id and the exit status (a
Process::Status object) of that child. Raises a
SystemError if there are no child processes.
Process.fork { exit 99 } #=> 27437 pid, status = Process.wait2 pid #=> 27437 status.exitstatus #=> 99
 
               static VALUE
proc_wait2(int argc, VALUE *argv)
{
    VALUE pid = proc_wait(argc, argv);
    if (NIL_P(pid)) return Qnil;
    return rb_assoc_new(pid, rb_last_status_get());
}
             
            Waits for all children, returning an array of pid/status
pairs (where status is a Process::Status object).
fork { sleep 0.2; exit 2 } #=> 27432 fork { sleep 0.1; exit 1 } #=> 27433 fork { exit 0 } #=> 27434 p Process.waitall
produces:
[[27434, #<Process::Status: pid=27434,exited(0)>], [27433, #<Process::Status: pid=27433,exited(1)>], [27432, #<Process::Status: pid=27432,exited(2)>]]
 
               static VALUE
proc_waitall(void)
{
    VALUE result;
    rb_pid_t pid;
    int status;
    rb_secure(2);
    result = rb_ary_new();
#ifdef NO_WAITPID
    if (pid_tbl) {
        st_foreach(pid_tbl, waitall_each, result);
    }
#else
    rb_last_status_clear();
#endif
    for (pid = -1;;) {
#ifdef NO_WAITPID
        pid = wait(&status);
#else
        pid = rb_waitpid(-1, &status, 0);
#endif
        if (pid == -1) {
            if (errno == ECHILD)
                break;
#ifdef NO_WAITPID
            if (errno == EINTR) {
                rb_thread_schedule();
                continue;
            }
#endif
            rb_sys_fail(0);
        }
#ifdef NO_WAITPID
        rb_last_status_set(status, pid);
#endif
        rb_ary_push(result, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get()));
    }
    return result;
}
             
            Waits for a child process to exit, returns its process id, and sets
$? to a Process::Status object containing
information on that process. Which child it waits on depends on the value
of pid:
Waits for the child whose process ID equals pid.
Waits for any child whose process group ID equals that of the calling process.
Waits for any child process (the default if no pid is given).
Waits for any child whose process group ID equals the absolute value of pid.
The flags argument may be a logical or of the flag values
Process::WNOHANG (do not block if no child available) or
Process::WUNTRACED (return stopped children that haven't
been reported). Not all flags are available on all platforms, but a flag
value of zero will work on all platforms.
Calling this method raises a SystemError if there are no child
processes. Not available on all platforms.
include Process fork { exit 99 } #=> 27429 wait #=> 27429 $?.exitstatus #=> 99 pid = fork { sleep 3 } #=> 27440 Time.now #=> 2008-03-08 19:56:16 +0900 waitpid(pid, Process::WNOHANG) #=> nil Time.now #=> 2008-03-08 19:56:16 +0900 waitpid(pid, 0) #=> 27440 Time.now #=> 2008-03-08 19:56:19 +0900
 
               static VALUE
proc_wait(int argc, VALUE *argv)
{
    VALUE vpid, vflags;
    rb_pid_t pid;
    int flags, status;
    rb_secure(2);
    flags = 0;
    if (argc == 0) {
        pid = -1;
    }
    else {
        rb_scan_args(argc, argv, "02", &vpid, &vflags);
        pid = NUM2PIDT(vpid);
        if (argc == 2 && !NIL_P(vflags)) {
            flags = NUM2UINT(vflags);
        }
    }
    if ((pid = rb_waitpid(pid, &status, flags)) < 0)
        rb_sys_fail(0);
    if (pid == 0) {
        rb_last_status_clear();
        return Qnil;
    }
    return PIDT2NUM(pid);
}
             
            Waits for a child process to exit (see ::waitpid for exact semantics) and
returns an array containing the process id and the exit status (a
Process::Status object) of that child. Raises a
SystemError if there are no child processes.
Process.fork { exit 99 } #=> 27437 pid, status = Process.wait2 pid #=> 27437 status.exitstatus #=> 99
 
               static VALUE
proc_wait2(int argc, VALUE *argv)
{
    VALUE pid = proc_wait(argc, argv);
    if (NIL_P(pid)) return Qnil;
    return rb_assoc_new(pid, rb_last_status_get());
}