The Math
module contains module functions for basic
trigonometric and transcendental functions. See class Float
for a list of constants that define Ruby's floating point accuracy.
Computes the arc cosine of x. Returns 0..PI.
static VALUE math_acos(VALUE obj, VALUE x) { double d0, d; Need_Float(x); errno = 0; d0 = RFLOAT_VALUE(x); d = acos(d0); domain_check(d0, d, "acos"); return DBL2NUM(d); }
Computes the inverse hyperbolic cosine of x.
static VALUE math_acosh(VALUE obj, VALUE x) { double d0, d; Need_Float(x); errno = 0; d0 = RFLOAT_VALUE(x); d = acosh(d0); domain_check(d0, d, "acosh"); return DBL2NUM(d); }
Computes the arc sine of x. Returns -{PI/2} .. {PI/2}.
static VALUE math_asin(VALUE obj, VALUE x) { double d0, d; Need_Float(x); errno = 0; d0 = RFLOAT_VALUE(x); d = asin(d0); domain_check(d0, d, "asin"); return DBL2NUM(d); }
Computes the inverse hyperbolic sine of x.
static VALUE math_asinh(VALUE obj, VALUE x) { Need_Float(x); return DBL2NUM(asinh(RFLOAT_VALUE(x))); }
Computes the arc tangent of x. Returns -{PI/2} .. {PI/2}.
static VALUE math_atan(VALUE obj, VALUE x) { Need_Float(x); return DBL2NUM(atan(RFLOAT_VALUE(x))); }
Computes the arc tangent given y and x. Returns -PI..PI.
static VALUE math_atan2(VALUE obj, VALUE y, VALUE x) { Need_Float2(y, x); return DBL2NUM(atan2(RFLOAT_VALUE(y), RFLOAT_VALUE(x))); }
Computes the inverse hyperbolic tangent of x.
static VALUE math_atanh(VALUE obj, VALUE x) { double d0, d; Need_Float(x); errno = 0; d0 = RFLOAT_VALUE(x); d = atanh(d0); domain_check(d0, d, "atanh"); infinity_check(x, d, "atanh"); return DBL2NUM(d); }
Returns the cube root of numeric.
-9.upto(9) {|x| p [x, Math.cbrt(x), Math.cbrt(x)**3] } #=> [-9, -2.0800838230519, -9.0] [-8, -2.0, -8.0] [-7, -1.91293118277239, -7.0] [-6, -1.81712059283214, -6.0] [-5, -1.7099759466767, -5.0] [-4, -1.5874010519682, -4.0] [-3, -1.44224957030741, -3.0] [-2, -1.25992104989487, -2.0] [-1, -1.0, -1.0] [0, 0.0, 0.0] [1, 1.0, 1.0] [2, 1.25992104989487, 2.0] [3, 1.44224957030741, 3.0] [4, 1.5874010519682, 4.0] [5, 1.7099759466767, 5.0] [6, 1.81712059283214, 6.0] [7, 1.91293118277239, 7.0] [8, 2.0, 8.0] [9, 2.0800838230519, 9.0]
static VALUE math_cbrt(VALUE obj, VALUE x) { Need_Float(x); return DBL2NUM(cbrt(RFLOAT_VALUE(x))); }
Computes the cosine of x (expressed in radians). Returns -1..1.
static VALUE math_cos(VALUE obj, VALUE x) { Need_Float(x); return DBL2NUM(cos(RFLOAT_VALUE(x))); }
Computes the hyperbolic cosine of x (expressed in radians).
static VALUE math_cosh(VALUE obj, VALUE x) { Need_Float(x); return DBL2NUM(cosh(RFLOAT_VALUE(x))); }
Calculates the error function of x.
static VALUE math_erf(VALUE obj, VALUE x) { Need_Float(x); return DBL2NUM(erf(RFLOAT_VALUE(x))); }
Calculates the complementary error function of x.
static VALUE math_erfc(VALUE obj, VALUE x) { Need_Float(x); return DBL2NUM(erfc(RFLOAT_VALUE(x))); }
Returns e**x.
static VALUE math_exp(VALUE obj, VALUE x) { Need_Float(x); return DBL2NUM(exp(RFLOAT_VALUE(x))); }
Returns a two-element array containing the normalized fraction (a
Float
) and exponent (a Fixnum
) of
numeric.
fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11] fraction * 2**exponent #=> 1234.0
static VALUE math_frexp(VALUE obj, VALUE x) { double d; int exp; Need_Float(x); d = frexp(RFLOAT_VALUE(x), &exp); return rb_assoc_new(DBL2NUM(d), INT2NUM(exp)); }
Calculates the gamma function of x.
Note that gamma(n) is same as fact(n-1) for integer n >= 0. However gamma(n) returns float and possibly has error in calculation.
def fact(n) (1..n).inject(1) {|r,i| r*i } end 0.upto(25) {|i| p [i, Math.gamma(i+1), fact(i)] } #=> [0, 1.0, 1] [1, 1.0, 1] [2, 2.0, 2] [3, 6.0, 6] [4, 24.0, 24] [5, 120.0, 120] [6, 720.0, 720] [7, 5040.0, 5040] [8, 40320.0, 40320] [9, 362880.0, 362880] [10, 3628800.0, 3628800] [11, 39916800.0, 39916800] [12, 479001599.999999, 479001600] [13, 6227020800.00001, 6227020800] [14, 87178291199.9998, 87178291200] [15, 1307674368000.0, 1307674368000] [16, 20922789888000.0, 20922789888000] [17, 3.55687428096001e+14, 355687428096000] [18, 6.40237370572799e+15, 6402373705728000] [19, 1.21645100408832e+17, 121645100408832000] [20, 2.43290200817664e+18, 2432902008176640000] [21, 5.10909421717094e+19, 51090942171709440000] [22, 1.12400072777761e+21, 1124000727777607680000] [23, 2.58520167388851e+22, 25852016738884976640000] [24, 6.20448401733239e+23, 620448401733239439360000] [25, 1.5511210043331e+25, 15511210043330985984000000]
static VALUE math_gamma(VALUE obj, VALUE x) { double d0, d; Need_Float(x); errno = 0; d0 = RFLOAT_VALUE(x); d = tgamma(d0); domain_check(d0, d, "gamma"); return DBL2NUM(d); }
Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle with sides x and y.
Math.hypot(3, 4) #=> 5.0
static VALUE math_hypot(VALUE obj, VALUE x, VALUE y) { Need_Float2(x, y); return DBL2NUM(hypot(RFLOAT_VALUE(x), RFLOAT_VALUE(y))); }
Returns the value of flt*(2**int).
fraction, exponent = Math.frexp(1234) Math.ldexp(fraction, exponent) #=> 1234.0
static VALUE math_ldexp(VALUE obj, VALUE x, VALUE n) { Need_Float(x); return DBL2NUM(ldexp(RFLOAT_VALUE(x), NUM2INT(n))); }
Calculates the logarithmic gamma of x and the sign of gamma of x.
::lgamma is same as
[Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]
but avoid overflow by ::gamma for large x.
static VALUE math_lgamma(VALUE obj, VALUE x) { double d0, d; int sign; VALUE v; Need_Float(x); errno = 0; d0 = RFLOAT_VALUE(x); d = lgamma_r(d0, &sign); domain_check(d0, d, "lgamma"); v = DBL2NUM(d); return rb_assoc_new(v, INT2FIX(sign)); }
Returns the natural logarithm of numeric. If additional second argument is given, it will be the base of logarithm.
static VALUE math_log(int argc, VALUE *argv) { VALUE x, base; double d0, d; rb_scan_args(argc, argv, "11", &x, &base); Need_Float(x); errno = 0; d0 = RFLOAT_VALUE(x); d = log(d0); if (argc == 2) { Need_Float(base); d /= log(RFLOAT_VALUE(base)); } domain_check(d0, d, "log"); infinity_check(x, d, "log"); return DBL2NUM(d); }
Returns the base 10 logarithm of numeric.
static VALUE math_log10(VALUE obj, VALUE x) { double d0, d; Need_Float(x); errno = 0; d0 = RFLOAT_VALUE(x); d = log10(d0); domain_check(d0, d, "log10"); infinity_check(x, d, "log10"); return DBL2NUM(d); }
Returns the base 2 logarithm of numeric.
static VALUE math_log2(VALUE obj, VALUE x) { double d0, d; Need_Float(x); errno = 0; d0 = RFLOAT_VALUE(x); d = log2(d0); domain_check(d0, d, "log2"); infinity_check(x, d, "log2"); return DBL2NUM(d); }
Computes the sine of x (expressed in radians). Returns -1..1.
static VALUE math_sin(VALUE obj, VALUE x) { Need_Float(x); return DBL2NUM(sin(RFLOAT_VALUE(x))); }
Computes the hyperbolic sine of x (expressed in radians).
static VALUE math_sinh(VALUE obj, VALUE x) { Need_Float(x); return DBL2NUM(sinh(RFLOAT_VALUE(x))); }
Returns the non-negative square root of numeric.
0.upto(10) {|x| p [x, Math.sqrt(x), Math.sqrt(x)**2] } #=> [0, 0.0, 0.0] [1, 1.0, 1.0] [2, 1.4142135623731, 2.0] [3, 1.73205080756888, 3.0] [4, 2.0, 4.0] [5, 2.23606797749979, 5.0] [6, 2.44948974278318, 6.0] [7, 2.64575131106459, 7.0] [8, 2.82842712474619, 8.0] [9, 3.0, 9.0] [10, 3.16227766016838, 10.0]
static VALUE math_sqrt(VALUE obj, VALUE x) { double d0, d; Need_Float(x); errno = 0; d0 = RFLOAT_VALUE(x); d = sqrt(d0); domain_check(d0, d, "sqrt"); return DBL2NUM(d); }