BasicObject
is the parent class of all classes in Ruby.
It's an explicit blank class. Object
, the root of
Ruby's class hierarchy is a direct subclass of
BasicObject
. Its methods are therefore available to all
objects unless explicitly overridden.
Object
mixes in the Kernel
module, making the
built-in kernel functions globally accessible. Although the instance
methods of Object
are defined by the Kernel
module, we have chosen to document them here for clarity.
In the descriptions of Object's methods, the parameter symbol
refers to a symbol, which is either a quoted string or a
Symbol
(such as :name
).
constants to hold original stdin/stdout/stderr
Returns true if two objects do not match (using the =~ method), otherwise false.
static VALUE rb_obj_not_match(VALUE obj1, VALUE obj2) { VALUE result = rb_funcall(obj1, id_match, 1, obj2); return RTEST(result) ? Qfalse : Qtrue; }
Case Equality—For class Object
, effectively the same as
calling #==
, but typically overridden by descendents to
provide meaningful semantics in case
statements.
VALUE rb_equal(VALUE obj1, VALUE obj2) { VALUE result; if (obj1 == obj2) return Qtrue; result = rb_funcall(obj1, id_eq, 1, obj2); if (RTEST(result)) return Qtrue; return Qfalse; }
Pattern Match—Overridden by descendents (notably Regexp
and
String
) to provide meaningful pattern-match semantics.
static VALUE rb_obj_match(VALUE obj1, VALUE obj2) { return Qnil; }
Returns an integer identifier for obj. The same number will be
returned on all calls to id
for a given object, and no two
active objects will share an id. Object#object_id
is a
different concept from the :name
notation, which returns the
symbol id of name
. Replaces the deprecated
Object#id
.
VALUE rb_obj_id(VALUE obj) { /* * 32-bit VALUE space * MSB ------------------------ LSB * false 00000000000000000000000000000000 * true 00000000000000000000000000000010 * nil 00000000000000000000000000000100 * undef 00000000000000000000000000000110 * symbol ssssssssssssssssssssssss00001110 * object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE)) * fixnum fffffffffffffffffffffffffffffff1 * * object_id space * LSB * false 00000000000000000000000000000000 * true 00000000000000000000000000000010 * nil 00000000000000000000000000000100 * undef 00000000000000000000000000000110 * symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4) * object oooooooooooooooooooooooooooooo0 o...o % A = 0 * fixnum fffffffffffffffffffffffffffffff1 bignum if required * * where A = sizeof(RVALUE)/4 * * sizeof(RVALUE) is * 20 if 32-bit, double is 4-byte aligned * 24 if 32-bit, double is 8-byte aligned * 40 if 64-bit */ if (TYPE(obj) == T_SYMBOL) { return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG; } if (SPECIAL_CONST_P(obj)) { return LONG2NUM((SIGNED_VALUE)obj); } return (VALUE)((SIGNED_VALUE)obj|FIXNUM_FLAG); }
Returns the class of obj, now preferred over
Object#type
, as an object's type in Ruby is only loosely
tied to that object's class. This method must always be called with an
explicit receiver, as class
is also a reserved word in Ruby.
1.class #=> Fixnum self.class #=> Object
VALUE rb_obj_class(VALUE obj) { return rb_class_real(CLASS_OF(obj)); }
Produces a shallow copy of obj—the instance variables of
obj are copied, but not the objects they reference. Copies the
frozen and tainted state of obj. See also the discussion under
Object#dup
.
class Klass attr_accessor :str end s1 = Klass.new #=> #<Klass:0x401b3a38> s1.str = "Hello" #=> "Hello" s2 = s1.clone #=> #<Klass:0x401b3998 @str="Hello"> s2.str[1,4] = "i" #=> "i" s1.inspect #=> "#<Klass:0x401b3a38 @str=\"Hi\">" s2.inspect #=> "#<Klass:0x401b3998 @str=\"Hi\">"
This method may have class-specific behavior. If so, that behavior will be
documented under the #initialize_copy
method of the class.
VALUE rb_obj_clone(VALUE obj) { VALUE clone; if (rb_special_const_p(obj)) { rb_raise(rb_eTypeError, "can't clone %s", rb_obj_classname(obj)); } clone = rb_obj_alloc(rb_obj_class(obj)); RBASIC(clone)->klass = rb_singleton_class_clone(obj); RBASIC(clone)->flags = (RBASIC(obj)->flags | FL_TEST(clone, FL_TAINT) | FL_TEST(clone, FL_UNTRUSTED)) & ~(FL_FREEZE|FL_FINALIZE); init_copy(clone, obj); RBASIC(clone)->flags |= RBASIC(obj)->flags & FL_FREEZE; return clone; }
static VALUE rb_obj_define_method(int argc, VALUE *argv, VALUE obj) { VALUE klass = rb_singleton_class(obj); return rb_mod_define_method(argc, argv, klass); }
Prints obj on the given port (default $>
).
Equivalent to:
def display(port=$>) port.write self end
For example:
1.display "cat".display [ 4, 5, 6 ].display puts
produces:
1cat456
static VALUE rb_obj_display(int argc, VALUE *argv, VALUE self) { VALUE out; if (argc == 0) { out = rb_stdout; } else { rb_scan_args(argc, argv, "01", &out); } rb_io_write(out, self); return Qnil; }
Produces a shallow copy of obj—the instance variables of
obj are copied, but not the objects they reference.
dup
copies the tainted state of obj. See also the
discussion under Object#clone
. In general, clone
and dup
may have different semantics in descendent classes.
While clone
is used to duplicate an object, including its
internal state, dup
typically uses the class of the descendent
object to create the new instance.
This method may have class-specific behavior. If so, that behavior will be
documented under the #initialize_copy
method of the class.
VALUE rb_obj_dup(VALUE obj) { VALUE dup; if (rb_special_const_p(obj)) { rb_raise(rb_eTypeError, "can't dup %s", rb_obj_classname(obj)); } dup = rb_obj_alloc(rb_obj_class(obj)); init_copy(dup, obj); return dup; }
Returns Enumerator.new(self, method, *args).
e.g.:
str = "xyz" enum = str.enum_for(:each_byte) a = enum.map {|b| '%02x' % b } #=> ["78", "79", "7a"] # protects an array from being modified a = [1, 2, 3] some_method(a.to_enum)
static VALUE obj_to_enum(int argc, VALUE *argv, VALUE obj) { VALUE meth = sym_each; if (argc > 0) { --argc; meth = *argv++; } return rb_enumeratorize(obj, meth, argc, argv); }
Equality—At the Object
level, ==
returns
true
only if obj and other are the same
object. Typically, this method is overridden in descendent classes to
provide class-specific meaning.
Unlike ==
, the equal?
method should never be
overridden by subclasses: it is used to determine object identity (that is,
a.equal?(b)
iff a
is the same object as
b
).
The eql?
method returns true
if obj and
anObject have the same value. Used by Hash
to test
members for equality. For objects of class Object
,
eql?
is synonymous with ==
. Subclasses normally
continue this tradition, but there are exceptions. Numeric
types, for example, perform type conversion across ==
, but not
across eql?
, so:
1 == 1.0 #=> true 1.eql? 1.0 #=> false
VALUE rb_obj_equal(VALUE obj1, VALUE obj2) { if (obj1 == obj2) return Qtrue; return Qfalse; }
Adds to obj the instance methods from each module given as a parameter.
module Mod def hello "Hello from Mod.\n" end end class Klass def hello "Hello from Klass.\n" end end k = Klass.new k.hello #=> "Hello from Klass.\n" k.extend(Mod) #=> #<Klass:0x401b3bc8> k.hello #=> "Hello from Mod.\n"
static VALUE rb_obj_extend(int argc, VALUE *argv, VALUE obj) { int i; if (argc == 0) { rb_raise(rb_eArgError, "wrong number of arguments (0 for 1)"); } for (i = 0; i < argc; i++) Check_Type(argv[i], T_MODULE); while (argc--) { rb_funcall(argv[argc], rb_intern("extend_object"), 1, obj); rb_funcall(argv[argc], rb_intern("extended"), 1, obj); } return obj; }
Prevents further modifications to obj. A RuntimeError
will be raised if modification is attempted. There is no way to unfreeze a
frozen object. See also Object#frozen?
.
a = [ "a", "b", "c" ] a.freeze a << "z"
produces:
prog.rb:3:in `<<': can't modify frozen array (RuntimeError) from prog.rb:3
VALUE rb_obj_freeze(VALUE obj) { if (!OBJ_FROZEN(obj)) { if (rb_safe_level() >= 4 && !OBJ_UNTRUSTED(obj)) { rb_raise(rb_eSecurityError, "Insecure: can't freeze object"); } OBJ_FREEZE(obj); if (SPECIAL_CONST_P(obj)) { if (!immediate_frozen_tbl) { immediate_frozen_tbl = st_init_numtable(); } st_insert(immediate_frozen_tbl, obj, (st_data_t)Qtrue); } } return obj; }
Returns the freeze status of obj.
a = [ "a", "b", "c" ] a.freeze #=> ["a", "b", "c"] a.frozen? #=> true
VALUE rb_obj_frozen_p(VALUE obj) { if (OBJ_FROZEN(obj)) return Qtrue; if (SPECIAL_CONST_P(obj)) { if (!immediate_frozen_tbl) return Qfalse; if (st_lookup(immediate_frozen_tbl, obj, 0)) return Qtrue; } return Qfalse; }
Generates a Fixnum
hash value for this object. This function
must have the property that a.eql?(b)
implies a.hash ==
b.hash
. The hash value is used by class Hash
. Any hash
value that exceeds the capacity of a Fixnum
will be truncated
before being used.
VALUE rb_obj_id(VALUE obj) { /* * 32-bit VALUE space * MSB ------------------------ LSB * false 00000000000000000000000000000000 * true 00000000000000000000000000000010 * nil 00000000000000000000000000000100 * undef 00000000000000000000000000000110 * symbol ssssssssssssssssssssssss00001110 * object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE)) * fixnum fffffffffffffffffffffffffffffff1 * * object_id space * LSB * false 00000000000000000000000000000000 * true 00000000000000000000000000000010 * nil 00000000000000000000000000000100 * undef 00000000000000000000000000000110 * symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4) * object oooooooooooooooooooooooooooooo0 o...o % A = 0 * fixnum fffffffffffffffffffffffffffffff1 bignum if required * * where A = sizeof(RVALUE)/4 * * sizeof(RVALUE) is * 20 if 32-bit, double is 4-byte aligned * 24 if 32-bit, double is 8-byte aligned * 40 if 64-bit */ if (TYPE(obj) == T_SYMBOL) { return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG; } if (SPECIAL_CONST_P(obj)) { return LONG2NUM((SIGNED_VALUE)obj); } return (VALUE)((SIGNED_VALUE)obj|FIXNUM_FLAG); }
Returns a string containing a human-readable representation of
obj. If not overridden, uses the to_s
method to
generate the string.
[ 1, 2, 3..4, 'five' ].inspect #=> "[1, 2, 3..4, \"five\"]" Time.new.inspect #=> "2008-03-08 19:43:39 +0900"
static VALUE rb_obj_inspect(VALUE obj) { if (TYPE(obj) == T_OBJECT) { int has_ivar = 0; VALUE *ptr = ROBJECT_IVPTR(obj); long len = ROBJECT_NUMIV(obj); long i; for (i = 0; i < len; i++) { if (ptr[i] != Qundef) { has_ivar = 1; break; } } if (has_ivar) { VALUE str; const char *c = rb_obj_classname(obj); str = rb_sprintf("-<%s:%p", c, (void*)obj); return rb_exec_recursive(inspect_obj, obj, str); } } return rb_funcall(obj, rb_intern("to_s"), 0, 0); }
Returns true
if obj is an instance of the given
class. See also Object#kind_of?
.
VALUE rb_obj_is_instance_of(VALUE obj, VALUE c) { switch (TYPE(c)) { case T_MODULE: case T_CLASS: case T_ICLASS: break; default: rb_raise(rb_eTypeError, "class or module required"); } if (rb_obj_class(obj) == c) return Qtrue; return Qfalse; }
Returns true
if the given instance variable is defined in
obj.
class Fred def initialize(p1, p2) @a, @b = p1, p2 end end fred = Fred.new('cat', 99) fred.instance_variable_defined?(:@a) #=> true fred.instance_variable_defined?("@b") #=> true fred.instance_variable_defined?("@c") #=> false
static VALUE rb_obj_ivar_defined(VALUE obj, VALUE iv) { ID id = rb_to_id(iv); if (!rb_is_instance_id(id)) { rb_name_error(id, "`%s' is not allowed as an instance variable name", rb_id2name(id)); } return rb_ivar_defined(obj, id); }
Returns the value of the given instance variable, or nil if the instance
variable is not set. The @
part of the variable name should be
included for regular instance variables. Throws a NameError
exception if the supplied symbol is not valid as an instance variable name.
class Fred def initialize(p1, p2) @a, @b = p1, p2 end end fred = Fred.new('cat', 99) fred.instance_variable_get(:@a) #=> "cat" fred.instance_variable_get("@b") #=> 99
static VALUE rb_obj_ivar_get(VALUE obj, VALUE iv) { ID id = rb_to_id(iv); if (!rb_is_instance_id(id)) { rb_name_error(id, "`%s' is not allowed as an instance variable name", rb_id2name(id)); } return rb_ivar_get(obj, id); }
Sets the instance variable names by symbol to object, thereby frustrating the efforts of the class's author to attempt to provide proper encapsulation. The variable did not have to exist prior to this call.
class Fred def initialize(p1, p2) @a, @b = p1, p2 end end fred = Fred.new('cat', 99) fred.instance_variable_set(:@a, 'dog') #=> "dog" fred.instance_variable_set(:@c, 'cat') #=> "cat" fred.inspect #=> "#<Fred:0x401b3da8 @a=\"dog\", @b=99, @c=\"cat\">"
static VALUE rb_obj_ivar_set(VALUE obj, VALUE iv, VALUE val) { ID id = rb_to_id(iv); if (!rb_is_instance_id(id)) { rb_name_error(id, "`%s' is not allowed as an instance variable name", rb_id2name(id)); } return rb_ivar_set(obj, id, val); }
Returns an array of instance variable names for the receiver. Note that simply defining an accessor does not create the corresponding instance variable.
class Fred attr_accessor :a1 def initialize @iv = 3 end end Fred.new.instance_variables #=> [:@iv]
VALUE rb_obj_instance_variables(VALUE obj) { VALUE ary; ary = rb_ary_new(); rb_ivar_foreach(obj, ivar_i, ary); return ary; }
Returns true
if class is the class of obj,
or if class is one of the superclasses of obj or modules
included in obj.
module M; end class A include M end class B < A; end class C < B; end b = B.new b.instance_of? A #=> false b.instance_of? B #=> true b.instance_of? C #=> false b.instance_of? M #=> false b.kind_of? A #=> true b.kind_of? B #=> true b.kind_of? C #=> false b.kind_of? M #=> true
VALUE rb_obj_is_kind_of(VALUE obj, VALUE c) { VALUE cl = CLASS_OF(obj); switch (TYPE(c)) { case T_MODULE: case T_CLASS: case T_ICLASS: break; default: rb_raise(rb_eTypeError, "class or module required"); } while (cl) { if (cl == c || RCLASS_M_TBL(cl) == RCLASS_M_TBL(c)) return Qtrue; cl = RCLASS_SUPER(cl); } return Qfalse; }
Returns true
if class is the class of obj,
or if class is one of the superclasses of obj or modules
included in obj.
module M; end class A include M end class B < A; end class C < B; end b = B.new b.instance_of? A #=> false b.instance_of? B #=> true b.instance_of? C #=> false b.instance_of? M #=> false b.kind_of? A #=> true b.kind_of? B #=> true b.kind_of? C #=> false b.kind_of? M #=> true
VALUE rb_obj_is_kind_of(VALUE obj, VALUE c) { VALUE cl = CLASS_OF(obj); switch (TYPE(c)) { case T_MODULE: case T_CLASS: case T_ICLASS: break; default: rb_raise(rb_eTypeError, "class or module required"); } while (cl) { if (cl == c || RCLASS_M_TBL(cl) == RCLASS_M_TBL(c)) return Qtrue; cl = RCLASS_SUPER(cl); } return Qfalse; }
Looks up the named method as a receiver in obj, returning a
Method
object (or raising NameError
). The
Method
object acts as a closure in obj's object
instance, so instance variables and the value of self
remain
available.
class Demo def initialize(n) @iv = n end def hello() "Hello, @iv = #{@iv}" end end k = Demo.new(99) m = k.method(:hello) m.call #=> "Hello, @iv = 99" l = Demo.new('Fred') m = l.method("hello") m.call #=> "Hello, @iv = Fred"
VALUE rb_obj_method(VALUE obj, VALUE vid) { return mnew(CLASS_OF(obj), obj, rb_to_id(vid), rb_cMethod, Qfalse); }
Returns a list of the names of methods publicly accessible in obj. This will include all the methods accessible in obj's ancestors.
class Klass def kMethod() end end k = Klass.new k.methods[0..9] #=> ["kMethod", "freeze", "nil?", "is_a?", # "class", "instance_variable_set", # "methods", "extend", "__send__", "instance_eval"] k.methods.length #=> 42
static VALUE rb_obj_methods(int argc, VALUE *argv, VALUE obj) { retry: if (argc == 0) { VALUE args[1]; args[0] = Qtrue; return rb_class_instance_methods(1, args, CLASS_OF(obj)); } else { VALUE recur; rb_scan_args(argc, argv, "1", &recur); if (RTEST(recur)) { argc = 0; goto retry; } return rb_obj_singleton_methods(argc, argv, obj); } }
call_seq:
nil.nil? => true <anything_else>.nil? => false
Only the object nil responds true
to
nil?
.
static VALUE rb_false(VALUE obj) { return Qfalse; }
Returns an integer identifier for obj. The same number will be
returned on all calls to id
for a given object, and no two
active objects will share an id. Object#object_id
is a
different concept from the :name
notation, which returns the
symbol id of name
. Replaces the deprecated
Object#id
.
VALUE rb_obj_id(VALUE obj) { /* * 32-bit VALUE space * MSB ------------------------ LSB * false 00000000000000000000000000000000 * true 00000000000000000000000000000010 * nil 00000000000000000000000000000100 * undef 00000000000000000000000000000110 * symbol ssssssssssssssssssssssss00001110 * object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE)) * fixnum fffffffffffffffffffffffffffffff1 * * object_id space * LSB * false 00000000000000000000000000000000 * true 00000000000000000000000000000010 * nil 00000000000000000000000000000100 * undef 00000000000000000000000000000110 * symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4) * object oooooooooooooooooooooooooooooo0 o...o % A = 0 * fixnum fffffffffffffffffffffffffffffff1 bignum if required * * where A = sizeof(RVALUE)/4 * * sizeof(RVALUE) is * 20 if 32-bit, double is 4-byte aligned * 24 if 32-bit, double is 8-byte aligned * 40 if 64-bit */ if (TYPE(obj) == T_SYMBOL) { return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG; } if (SPECIAL_CONST_P(obj)) { return LONG2NUM((SIGNED_VALUE)obj); } return (VALUE)((SIGNED_VALUE)obj|FIXNUM_FLAG); }
Returns the list of private methods accessible to obj. If the
all parameter is set to false
, only those methods in
the receiver will be listed.
static VALUE rb_obj_private_methods(int argc, VALUE *argv, VALUE obj) { if (argc == 0) { /* hack to stop warning */ VALUE args[1]; args[0] = Qtrue; return rb_class_private_instance_methods(1, args, CLASS_OF(obj)); } return rb_class_private_instance_methods(argc, argv, CLASS_OF(obj)); }
Returns the list of protected methods accessible to obj. If the
all parameter is set to false
, only those methods in
the receiver will be listed.
static VALUE rb_obj_protected_methods(int argc, VALUE *argv, VALUE obj) { if (argc == 0) { /* hack to stop warning */ VALUE args[1]; args[0] = Qtrue; return rb_class_protected_instance_methods(1, args, CLASS_OF(obj)); } return rb_class_protected_instance_methods(argc, argv, CLASS_OF(obj)); }
VALUE rb_obj_public_method(VALUE obj, VALUE vid) { return mnew(CLASS_OF(obj), obj, rb_to_id(vid), rb_cMethod, Qtrue); }
Returns the list of public methods accessible to obj. If the
all parameter is set to false
, only those methods in
the receiver will be listed.
static VALUE rb_obj_public_methods(int argc, VALUE *argv, VALUE obj) { if (argc == 0) { /* hack to stop warning */ VALUE args[1]; args[0] = Qtrue; return rb_class_public_instance_methods(1, args, CLASS_OF(obj)); } return rb_class_public_instance_methods(argc, argv, CLASS_OF(obj)); }
Invokes the method identified by symbol, passing it any arguments specified. Unlike send, #public_send calls public methods only.
1.public_send(:puts, "hello") # causes NoMethodError
VALUE rb_f_public_send(int argc, VALUE *argv, VALUE recv) { return send_internal(argc, argv, recv, NOEX_PUBLIC); }
Returns true
if obj responds to the given method.
Private methods are included in the search only if the optional second
parameter evaluates to true
.
static VALUE obj_respond_to(int argc, VALUE *argv, VALUE obj) { VALUE mid, priv; ID id; rb_scan_args(argc, argv, "11", &mid, &priv); id = rb_to_id(mid); if (rb_method_boundp(CLASS_OF(obj), id, !RTEST(priv))) { return Qtrue; } return Qfalse; }
Invokes the method identified by symbol, passing it any arguments
specified. You can use __send__
if the name send
clashes with an existing method in obj.
class Klass def hello(*args) "Hello " + args.join(' ') end end k = Klass.new k.send :hello, "gentle", "readers" #=> "Hello gentle readers"
VALUE rb_f_send(int argc, VALUE *argv, VALUE recv) { return send_internal(argc, argv, recv, NOEX_NOSUPER | NOEX_PRIVATE); }
Returns an array of the names of singleton methods for obj. If the optional all parameter is true, the list will include methods in modules included in obj.
module Other def three() end end class Single def Single.four() end end a = Single.new def a.one() end class << a include Other def two() end end Single.singleton_methods #=> [:four] a.singleton_methods(false) #=> [:two, :one] a.singleton_methods #=> [:two, :one, :three]
VALUE rb_obj_singleton_methods(int argc, VALUE *argv, VALUE obj) { VALUE recur, ary, klass; st_table *list; if (argc == 0) { recur = Qtrue; } else { rb_scan_args(argc, argv, "01", &recur); } klass = CLASS_OF(obj); list = st_init_numtable(); if (klass && FL_TEST(klass, FL_SINGLETON)) { st_foreach(RCLASS_M_TBL(klass), method_entry, (st_data_t)list); klass = RCLASS_SUPER(klass); } if (RTEST(recur)) { while (klass && (FL_TEST(klass, FL_SINGLETON) || TYPE(klass) == T_ICLASS)) { st_foreach(RCLASS_M_TBL(klass), method_entry, (st_data_t)list); klass = RCLASS_SUPER(klass); } } ary = rb_ary_new(); st_foreach(list, ins_methods_i, ary); st_free_table(list); return ary; }
Marks obj as tainted—if the $SAFE
level is set
appropriately, many method calls which might alter the running programs
environment will refuse to accept tainted strings.
VALUE rb_obj_taint(VALUE obj) { rb_secure(4); if (!OBJ_TAINTED(obj)) { if (OBJ_FROZEN(obj)) { rb_error_frozen("object"); } OBJ_TAINT(obj); } return obj; }
Returns true
if the object is tainted.
VALUE rb_obj_tainted(VALUE obj) { if (OBJ_TAINTED(obj)) return Qtrue; return Qfalse; }
Yields x
to the block, and then returns x
. The
primary purpose of this method is to “tap into” a method chain, in order to
perform operations on intermediate results within the chain.
(1..10) .tap {|x| puts "original: #{x.inspect}"} .to_a .tap {|x| puts "array: #{x.inspect}"} .select {|x| x%2==0} .tap {|x| puts "evens: #{x.inspect}"} .map { |x| x*x } .tap {|x| puts "squares: #{x.inspect}"}
VALUE rb_obj_tap(VALUE obj) { rb_yield(obj); return obj; }
Returns Enumerator.new(self, method, *args).
e.g.:
str = "xyz" enum = str.enum_for(:each_byte) a = enum.map {|b| '%02x' % b } #=> ["78", "79", "7a"] # protects an array from being modified a = [1, 2, 3] some_method(a.to_enum)
static VALUE obj_to_enum(int argc, VALUE *argv, VALUE obj) { VALUE meth = sym_each; if (argc > 0) { --argc; meth = *argv++; } return rb_enumeratorize(obj, meth, argc, argv); }
Returns a string representing obj. The default to_s
prints the object's class and an encoding of the object id. As a
special case, the top-level object that is the initial execution context of
Ruby programs returns “main.''
VALUE rb_any_to_s(VALUE obj) { const char *cname = rb_obj_classname(obj); VALUE str; str = rb_sprintf("#<%s:%p>", cname, (void*)obj); OBJ_INFECT(str, obj); return str; }
Removes the untrusted mark from obj.
VALUE rb_obj_trust(VALUE obj) { rb_secure(3); if (OBJ_UNTRUSTED(obj)) { if (OBJ_FROZEN(obj)) { rb_error_frozen("object"); } FL_UNSET(obj, FL_UNTRUSTED); } return obj; }
Removes the taint from obj.
VALUE rb_obj_untaint(VALUE obj) { rb_secure(3); if (OBJ_TAINTED(obj)) { if (OBJ_FROZEN(obj)) { rb_error_frozen("object"); } FL_UNSET(obj, FL_TAINT); } return obj; }
Removes the named instance variable from obj, returning that variable's value.
class Dummy attr_reader :var def initialize @var = 99 end def remove remove_instance_variable(:@var) end end d = Dummy.new d.var #=> 99 d.remove #=> 99 d.var #=> nil
VALUE rb_obj_remove_instance_variable(VALUE obj, VALUE name) { VALUE val = Qnil; const ID id = rb_to_id(name); st_data_t n, v; struct st_table *iv_index_tbl; st_data_t index; if (!OBJ_UNTRUSTED(obj) && rb_safe_level() >= 4) rb_raise(rb_eSecurityError, "Insecure: can't modify instance variable"); if (OBJ_FROZEN(obj)) rb_error_frozen("object"); if (!rb_is_instance_id(id)) { rb_name_error(id, "`%s' is not allowed as an instance variable name", rb_id2name(id)); } switch (TYPE(obj)) { case T_OBJECT: iv_index_tbl = ROBJECT_IV_INDEX_TBL(obj); if (!iv_index_tbl) break; if (!st_lookup(iv_index_tbl, id, &index)) break; if (ROBJECT_NUMIV(obj) <= index) break; val = ROBJECT_IVPTR(obj)[index]; if (val != Qundef) { ROBJECT_IVPTR(obj)[index] = Qundef; return val; } break; case T_CLASS: case T_MODULE: n = id; if (RCLASS_IV_TBL(obj) && st_delete(RCLASS_IV_TBL(obj), &n, &v)) { return (VALUE)v; } break; default: if (FL_TEST(obj, FL_EXIVAR) || rb_special_const_p(obj)) { if (generic_ivar_remove(obj, id, &val)) { return val; } } break; } rb_name_error(id, "instance variable %s not defined", rb_id2name(id)); return Qnil; /* not reached */ }