In Files

  • complex.c

Complex

A complex number can be represented as a paired real number with imaginary unit; a+bi. Where a is real part, b is imaginary part and i is imaginary unit. Real a equals complex a+0i mathematically.

In ruby, you can create complex object with Complex, ::rect, ::polar or to_c method.

Complex(1)           #=> (1+0i)
Complex(2, 3)        #=> (2+3i)
Complex.polar(2, 3)  #=> (-1.9799849932008908+0.2822400161197344i)
3.to_c               #=> (3+0i)

You can also create complex object from floating-point numbers or strings.

Complex(0.3)         #=> (0.3+0i)
Complex('0.3-0.5i')  #=> (0.3-0.5i)
Complex('2/3+3/4i')  #=> ((2/3)+(3/4)*i)
Complex('1@2')       #=> (-0.4161468365471424+0.9092974268256817i)

0.3.to_c             #=> (0.3+0i)
'0.3-0.5i'.to_c      #=> (0.3-0.5i)
'2/3+3/4i'.to_c      #=> ((2/3)+(3/4)*i)
'1@2'.to_c           #=> (-0.4161468365471424+0.9092974268256817i)

A complex object is either an exact or an inexact number.

Complex(1, 1) / 2    #=> ((1/2)+(1/2)*i)
Complex(1, 1) / 2.0  #=> (0.5+0.5i)

Constants

I

Public Class Methods

polar(p1, p2) click to toggle source
 
               static VALUE
nucomp_s_polar(VALUE klass, VALUE abs, VALUE arg)
{
    return f_complex_polar(klass, abs, arg);
}
            
rect(p1, p2 = v2) click to toggle source
 
               static VALUE
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
{
    VALUE real, imag;

    switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
      case 1:
        nucomp_real_check(real);
        imag = ZERO;
        break;
      default:
        nucomp_real_check(real);
        nucomp_real_check(imag);
        break;
    }

    return nucomp_s_canonicalize_internal(klass, real, imag);
}
            
rectangular(p1, p2 = v2) click to toggle source
 
               static VALUE
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
{
    VALUE real, imag;

    switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
      case 1:
        nucomp_real_check(real);
        imag = ZERO;
        break;
      default:
        nucomp_real_check(real);
        nucomp_real_check(imag);
        break;
    }

    return nucomp_s_canonicalize_internal(klass, real, imag);
}
            

Public Instance Methods

*(p1) click to toggle source
 
               static VALUE
nucomp_mul(VALUE self, VALUE other)
{
    if (k_complex_p(other)) {
        VALUE real, imag;

        get_dat2(self, other);

        real = f_sub(f_mul(adat->real, bdat->real),
                     f_mul(adat->imag, bdat->imag));
        imag = f_add(f_mul(adat->real, bdat->imag),
                      f_mul(adat->imag, bdat->real));

        return f_complex_new2(CLASS_OF(self), real, imag);
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        get_dat1(self);

        return f_complex_new2(CLASS_OF(self),
                              f_mul(dat->real, other),
                              f_mul(dat->imag, other));
    }
    return rb_num_coerce_bin(self, other, '*');
}
            
**(p1) click to toggle source
 
               static VALUE
nucomp_expt(VALUE self, VALUE other)
{
    if (k_exact_p(other) && f_zero_p(other))
        return f_complex_new_bang1(CLASS_OF(self), ONE);

    if (k_rational_p(other) && f_one_p(f_denominator(other)))
        other = f_numerator(other); /* good? */

    if (k_complex_p(other)) {
        VALUE a, r, theta, ore, oim, nr, ntheta;

        get_dat1(other);

        a = f_polar(self);
        r = RARRAY_PTR(a)[0];
        theta = RARRAY_PTR(a)[1];

        ore = dat->real;
        oim = dat->imag;
        nr = m_exp_bang(f_sub(f_mul(ore, m_log_bang(r)),
                              f_mul(oim, theta)));
        ntheta = f_add(f_mul(theta, ore), f_mul(oim, m_log_bang(r)));
        return f_complex_polar(CLASS_OF(self), nr, ntheta);
    }
    if (k_integer_p(other)) {
        if (f_gt_p(other, ZERO)) {
            VALUE x, z, n;

            x = self;
            z = x;
            n = f_sub(other, ONE);

            while (f_nonzero_p(n)) {
                VALUE a;

                while (a = f_divmod(n, TWO),
                       f_zero_p(RARRAY_PTR(a)[1])) {
                    get_dat1(x);

                    x = f_complex_new2(CLASS_OF(self),
                                       f_sub(f_mul(dat->real, dat->real),
                                             f_mul(dat->imag, dat->imag)),
                                       f_mul(f_mul(TWO, dat->real), dat->imag));
                    n = RARRAY_PTR(a)[0];
                }
                z = f_mul(z, x);
                n = f_sub(n, ONE);
            }
            return z;
        }
        return f_expt(f_div(f_to_r(ONE), self), f_negate(other));
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        VALUE a, r, theta;

        a = f_polar(self);
        r = RARRAY_PTR(a)[0];
        theta = RARRAY_PTR(a)[1];
        return f_complex_polar(CLASS_OF(self), f_expt(r, other),
                              f_mul(theta, other));
    }
    return rb_num_coerce_bin(self, other, id_expt);
}
            
+(p1) click to toggle source
 
               static VALUE
nucomp_add(VALUE self, VALUE other)
{
    if (k_complex_p(other)) {
        VALUE real, imag;

        get_dat2(self, other);

        real = f_add(adat->real, bdat->real);
        imag = f_add(adat->imag, bdat->imag);

        return f_complex_new2(CLASS_OF(self), real, imag);
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        get_dat1(self);

        return f_complex_new2(CLASS_OF(self),
                              f_add(dat->real, other), dat->imag);
    }
    return rb_num_coerce_bin(self, other, '+');
}
            
-(p1) click to toggle source
 
               static VALUE
nucomp_sub(VALUE self, VALUE other)
{
    if (k_complex_p(other)) {
        VALUE real, imag;

        get_dat2(self, other);

        real = f_sub(adat->real, bdat->real);
        imag = f_sub(adat->imag, bdat->imag);

        return f_complex_new2(CLASS_OF(self), real, imag);
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        get_dat1(self);

        return f_complex_new2(CLASS_OF(self),
                              f_sub(dat->real, other), dat->imag);
    }
    return rb_num_coerce_bin(self, other, '-');
}
            
-@() click to toggle source
 
               static VALUE
nucomp_negate(VALUE self)
{
  get_dat1(self);
  return f_complex_new2(CLASS_OF(self),
                        f_negate(dat->real), f_negate(dat->imag));
}
            
/(p1) click to toggle source
 
               static VALUE
nucomp_div(VALUE self, VALUE other)
{
    if (k_complex_p(other)) {
        get_dat2(self, other);

        if (TYPE(adat->real)  == T_FLOAT ||
            TYPE(adat->imag) == T_FLOAT ||
            TYPE(bdat->real)  == T_FLOAT ||
            TYPE(bdat->imag) == T_FLOAT) {
            VALUE magn = m_hypot(bdat->real, bdat->imag);
            VALUE tmp = f_complex_new_bang2(CLASS_OF(self),
                                            f_div(bdat->real, magn),
                                            f_div(bdat->imag, magn));
            return f_div(f_mul(self, f_conj(tmp)), magn);
        }
        return f_div(f_mul(self, f_conj(other)), f_abs2(other));
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        get_dat1(self);

        return f_complex_new2(CLASS_OF(self),
                              f_div(dat->real, other),
                              f_div(dat->imag, other));
    }
    return rb_num_coerce_bin(self, other, '/');
}
            
==(p1) click to toggle source
 
               static VALUE
nucomp_equal_p(VALUE self, VALUE other)
{
    if (k_complex_p(other)) {
        get_dat2(self, other);

        return f_boolcast(f_equal_p(adat->real, bdat->real) &&
                          f_equal_p(adat->imag, bdat->imag));
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        get_dat1(self);

        return f_boolcast(f_equal_p(dat->real, other) && f_zero_p(dat->imag));
    }
    return f_equal_p(other, self);
}
            
abs() click to toggle source
 
               static VALUE
nucomp_abs(VALUE self)
{
    get_dat1(self);
    return m_hypot(dat->real, dat->imag);
}
            
abs2() click to toggle source
 
               static VALUE
nucomp_abs2(VALUE self)
{
    get_dat1(self);
    return f_add(f_mul(dat->real, dat->real),
                 f_mul(dat->imag, dat->imag));
}
            
angle() click to toggle source
 
               static VALUE
nucomp_arg(VALUE self)
{
    get_dat1(self);
    return m_atan2_bang(dat->imag, dat->real);
}
            
arg() click to toggle source
 
               static VALUE
nucomp_arg(VALUE self)
{
    get_dat1(self);
    return m_atan2_bang(dat->imag, dat->real);
}
            
coerce(p1) click to toggle source
 
               static VALUE
nucomp_coerce(VALUE self, VALUE other)
{
    if (k_numeric_p(other) && f_real_p(other))
        return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self);
    if (TYPE(other) == T_COMPLEX)
        return rb_assoc_new(other, self);

    rb_raise(rb_eTypeError, "%s can't be coerced into %s",
             rb_obj_classname(other), rb_obj_classname(self));
    return Qnil;
}
            
complex?() click to toggle source
 
               static VALUE
nucomp_true(VALUE self)
{
    return Qtrue;
}
            
conj() click to toggle source
 
               static VALUE
nucomp_conj(VALUE self)
{
    get_dat1(self);
    return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
}
            
conjugate() click to toggle source
 
               static VALUE
nucomp_conj(VALUE self)
{
    get_dat1(self);
    return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
}
            
denominator() click to toggle source
 
               static VALUE
nucomp_denominator(VALUE self)
{
    get_dat1(self);
    return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag));
}
            
eql?(p1) click to toggle source
 
               static VALUE
nucomp_eql_p(VALUE self, VALUE other)
{
    if (k_complex_p(other)) {
        get_dat2(self, other);

        return f_boolcast((CLASS_OF(adat->real) == CLASS_OF(bdat->real)) &&
                          (CLASS_OF(adat->imag) == CLASS_OF(bdat->imag)) &&
                          f_equal_p(self, other));

    }
    return Qfalse;
}
            
exact?() click to toggle source
 
               static VALUE
nucomp_exact_p(VALUE self)
{
    get_dat1(self);
    return f_boolcast(f_exact_p(dat->real) && f_exact_p(dat->imag));
}
            
fdiv(p1) click to toggle source
 
               static VALUE
nucomp_fdiv(VALUE self, VALUE other)
{
    get_dat1(self);

    return f_div(f_complex_new2(CLASS_OF(self),
                                f_to_f(dat->real),
                                f_to_f(dat->imag)), other);
}
            
hash() click to toggle source
 
               static VALUE
nucomp_hash(VALUE self)
{
    get_dat1(self);
    return f_xor(f_hash(dat->real), f_hash(dat->imag));
}
            
imag() click to toggle source
 
               static VALUE
nucomp_imag(VALUE self)
{
    get_dat1(self);
    return dat->imag;
}
            
imaginary() click to toggle source
 
               static VALUE
nucomp_imag(VALUE self)
{
    get_dat1(self);
    return dat->imag;
}
            
inexact?() click to toggle source
 
               static VALUE
nucomp_inexact_p(VALUE self)
{
    return f_boolcast(!nucomp_exact_p(self));
}
            
inspect() click to toggle source
 
               static VALUE
nucomp_inspect(VALUE self)
{
    VALUE s;

    s = rb_usascii_str_new2("(");
    rb_str_concat(s, nucomp_format(self, f_inspect));
    rb_str_cat2(s, ")");

    return s;
}
            
magnitude() click to toggle source
 
               static VALUE
nucomp_abs(VALUE self)
{
    get_dat1(self);
    return m_hypot(dat->real, dat->imag);
}
            
marshal_dump() click to toggle source
 
               static VALUE
nucomp_marshal_dump(VALUE self)
{
    VALUE a;
    get_dat1(self);

    a = rb_assoc_new(dat->real, dat->imag);
    rb_copy_generic_ivar(a, self);
    return a;
}
            
marshal_load(p1) click to toggle source
 
               static VALUE
nucomp_marshal_load(VALUE self, VALUE a)
{
    get_dat1(self);
    dat->real = RARRAY_PTR(a)[0];
    dat->imag = RARRAY_PTR(a)[1];
    rb_copy_generic_ivar(self, a);
    return self;
}
            
numerator() click to toggle source
 
               static VALUE
nucomp_numerator(VALUE self)
{
    VALUE cd;

    get_dat1(self);

    cd = f_denominator(self);
    return f_complex_new2(CLASS_OF(self),
                          f_mul(f_numerator(dat->real),
                                f_div(cd, f_denominator(dat->real))),
                          f_mul(f_numerator(dat->imag),
                                f_div(cd, f_denominator(dat->imag))));
}
            
phase() click to toggle source
 
               static VALUE
nucomp_arg(VALUE self)
{
    get_dat1(self);
    return m_atan2_bang(dat->imag, dat->real);
}
            
polar() click to toggle source
 
               static VALUE
nucomp_polar(VALUE self)
{
    return rb_assoc_new(f_abs(self), f_arg(self));
}
            
quo(p1) click to toggle source
 
               static VALUE
nucomp_div(VALUE self, VALUE other)
{
    if (k_complex_p(other)) {
        get_dat2(self, other);

        if (TYPE(adat->real)  == T_FLOAT ||
            TYPE(adat->imag) == T_FLOAT ||
            TYPE(bdat->real)  == T_FLOAT ||
            TYPE(bdat->imag) == T_FLOAT) {
            VALUE magn = m_hypot(bdat->real, bdat->imag);
            VALUE tmp = f_complex_new_bang2(CLASS_OF(self),
                                            f_div(bdat->real, magn),
                                            f_div(bdat->imag, magn));
            return f_div(f_mul(self, f_conj(tmp)), magn);
        }
        return f_div(f_mul(self, f_conj(other)), f_abs2(other));
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        get_dat1(self);

        return f_complex_new2(CLASS_OF(self),
                              f_div(dat->real, other),
                              f_div(dat->imag, other));
    }
    return rb_num_coerce_bin(self, other, '/');
}
            
real() click to toggle source
 
               static VALUE
nucomp_real(VALUE self)
{
    get_dat1(self);
    return dat->real;
}
            
real?() click to toggle source
 
               static VALUE
nucomp_false(VALUE self)
{
    return Qfalse;
}
            
rect() click to toggle source
 
               static VALUE
nucomp_rect(VALUE self)
{
    get_dat1(self);
    return rb_assoc_new(dat->real, dat->imag);
}
            
rectangular() click to toggle source
 
               static VALUE
nucomp_rect(VALUE self)
{
    get_dat1(self);
    return rb_assoc_new(dat->real, dat->imag);
}
            
to_f() click to toggle source
 
               static VALUE
nucomp_to_f(VALUE self)
{
    get_dat1(self);

    if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
        VALUE s = f_to_s(self);
        rb_raise(rb_eRangeError, "can't convert %s into Float",
                 StringValuePtr(s));
    }
    return f_to_f(dat->real);
}
            
to_i() click to toggle source
 
               static VALUE
nucomp_to_i(VALUE self)
{
    get_dat1(self);

    if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
        VALUE s = f_to_s(self);
        rb_raise(rb_eRangeError, "can't convert %s into Integer",
                 StringValuePtr(s));
    }
    return f_to_i(dat->real);
}
            
to_r() click to toggle source
 
               static VALUE
nucomp_to_r(VALUE self)
{
    get_dat1(self);

    if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
        VALUE s = f_to_s(self);
        rb_raise(rb_eRangeError, "can't convert %s into Rational",
                 StringValuePtr(s));
    }
    return f_to_r(dat->real);
}
            
to_s() click to toggle source
 
               static VALUE
nucomp_to_s(VALUE self)
{
    return nucomp_format(self, f_to_s);
}
            
~() click to toggle source
 
               static VALUE
nucomp_conj(VALUE self)
{
    get_dat1(self);
    return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
}