A complex number can be represented as a paired real number with imaginary unit; a+bi. Where a is real part, b is imaginary part and i is imaginary unit. Real a equals complex a+0i mathematically.
In ruby, you can create complex object with Complex, ::rect, ::polar or to_c method.
Complex(1) #=> (1+0i) Complex(2, 3) #=> (2+3i) Complex.polar(2, 3) #=> (-1.9799849932008908+0.2822400161197344i) 3.to_c #=> (3+0i)
You can also create complex object from floating-point numbers or strings.
Complex(0.3) #=> (0.3+0i) Complex('0.3-0.5i') #=> (0.3-0.5i) Complex('2/3+3/4i') #=> ((2/3)+(3/4)*i) Complex('1@2') #=> (-0.4161468365471424+0.9092974268256817i) 0.3.to_c #=> (0.3+0i) '0.3-0.5i'.to_c #=> (0.3-0.5i) '2/3+3/4i'.to_c #=> ((2/3)+(3/4)*i) '1@2'.to_c #=> (-0.4161468365471424+0.9092974268256817i)
A complex object is either an exact or an inexact number.
Complex(1, 1) / 2 #=> ((1/2)+(1/2)*i) Complex(1, 1) / 2.0 #=> (0.5+0.5i)
static VALUE nucomp_s_polar(VALUE klass, VALUE abs, VALUE arg) { return f_complex_polar(klass, abs, arg); }
static VALUE nucomp_s_new(int argc, VALUE *argv, VALUE klass) { VALUE real, imag; switch (rb_scan_args(argc, argv, "11", &real, &imag)) { case 1: nucomp_real_check(real); imag = ZERO; break; default: nucomp_real_check(real); nucomp_real_check(imag); break; } return nucomp_s_canonicalize_internal(klass, real, imag); }
static VALUE nucomp_s_new(int argc, VALUE *argv, VALUE klass) { VALUE real, imag; switch (rb_scan_args(argc, argv, "11", &real, &imag)) { case 1: nucomp_real_check(real); imag = ZERO; break; default: nucomp_real_check(real); nucomp_real_check(imag); break; } return nucomp_s_canonicalize_internal(klass, real, imag); }
static VALUE nucomp_mul(VALUE self, VALUE other) { if (k_complex_p(other)) { VALUE real, imag; get_dat2(self, other); real = f_sub(f_mul(adat->real, bdat->real), f_mul(adat->imag, bdat->imag)); imag = f_add(f_mul(adat->real, bdat->imag), f_mul(adat->imag, bdat->real)); return f_complex_new2(CLASS_OF(self), real, imag); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return f_complex_new2(CLASS_OF(self), f_mul(dat->real, other), f_mul(dat->imag, other)); } return rb_num_coerce_bin(self, other, '*'); }
static VALUE nucomp_expt(VALUE self, VALUE other) { if (k_exact_p(other) && f_zero_p(other)) return f_complex_new_bang1(CLASS_OF(self), ONE); if (k_rational_p(other) && f_one_p(f_denominator(other))) other = f_numerator(other); /* good? */ if (k_complex_p(other)) { VALUE a, r, theta, ore, oim, nr, ntheta; get_dat1(other); a = f_polar(self); r = RARRAY_PTR(a)[0]; theta = RARRAY_PTR(a)[1]; ore = dat->real; oim = dat->imag; nr = m_exp_bang(f_sub(f_mul(ore, m_log_bang(r)), f_mul(oim, theta))); ntheta = f_add(f_mul(theta, ore), f_mul(oim, m_log_bang(r))); return f_complex_polar(CLASS_OF(self), nr, ntheta); } if (k_integer_p(other)) { if (f_gt_p(other, ZERO)) { VALUE x, z, n; x = self; z = x; n = f_sub(other, ONE); while (f_nonzero_p(n)) { VALUE a; while (a = f_divmod(n, TWO), f_zero_p(RARRAY_PTR(a)[1])) { get_dat1(x); x = f_complex_new2(CLASS_OF(self), f_sub(f_mul(dat->real, dat->real), f_mul(dat->imag, dat->imag)), f_mul(f_mul(TWO, dat->real), dat->imag)); n = RARRAY_PTR(a)[0]; } z = f_mul(z, x); n = f_sub(n, ONE); } return z; } return f_expt(f_div(f_to_r(ONE), self), f_negate(other)); } if (k_numeric_p(other) && f_real_p(other)) { VALUE a, r, theta; a = f_polar(self); r = RARRAY_PTR(a)[0]; theta = RARRAY_PTR(a)[1]; return f_complex_polar(CLASS_OF(self), f_expt(r, other), f_mul(theta, other)); } return rb_num_coerce_bin(self, other, id_expt); }
static VALUE nucomp_add(VALUE self, VALUE other) { if (k_complex_p(other)) { VALUE real, imag; get_dat2(self, other); real = f_add(adat->real, bdat->real); imag = f_add(adat->imag, bdat->imag); return f_complex_new2(CLASS_OF(self), real, imag); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return f_complex_new2(CLASS_OF(self), f_add(dat->real, other), dat->imag); } return rb_num_coerce_bin(self, other, '+'); }
static VALUE nucomp_sub(VALUE self, VALUE other) { if (k_complex_p(other)) { VALUE real, imag; get_dat2(self, other); real = f_sub(adat->real, bdat->real); imag = f_sub(adat->imag, bdat->imag); return f_complex_new2(CLASS_OF(self), real, imag); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return f_complex_new2(CLASS_OF(self), f_sub(dat->real, other), dat->imag); } return rb_num_coerce_bin(self, other, '-'); }
static VALUE nucomp_negate(VALUE self) { get_dat1(self); return f_complex_new2(CLASS_OF(self), f_negate(dat->real), f_negate(dat->imag)); }
static VALUE nucomp_div(VALUE self, VALUE other) { if (k_complex_p(other)) { get_dat2(self, other); if (TYPE(adat->real) == T_FLOAT || TYPE(adat->imag) == T_FLOAT || TYPE(bdat->real) == T_FLOAT || TYPE(bdat->imag) == T_FLOAT) { VALUE magn = m_hypot(bdat->real, bdat->imag); VALUE tmp = f_complex_new_bang2(CLASS_OF(self), f_div(bdat->real, magn), f_div(bdat->imag, magn)); return f_div(f_mul(self, f_conj(tmp)), magn); } return f_div(f_mul(self, f_conj(other)), f_abs2(other)); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return f_complex_new2(CLASS_OF(self), f_div(dat->real, other), f_div(dat->imag, other)); } return rb_num_coerce_bin(self, other, '/'); }
static VALUE nucomp_equal_p(VALUE self, VALUE other) { if (k_complex_p(other)) { get_dat2(self, other); return f_boolcast(f_equal_p(adat->real, bdat->real) && f_equal_p(adat->imag, bdat->imag)); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return f_boolcast(f_equal_p(dat->real, other) && f_zero_p(dat->imag)); } return f_equal_p(other, self); }
static VALUE nucomp_abs(VALUE self) { get_dat1(self); return m_hypot(dat->real, dat->imag); }
static VALUE nucomp_abs2(VALUE self) { get_dat1(self); return f_add(f_mul(dat->real, dat->real), f_mul(dat->imag, dat->imag)); }
static VALUE nucomp_arg(VALUE self) { get_dat1(self); return m_atan2_bang(dat->imag, dat->real); }
static VALUE nucomp_arg(VALUE self) { get_dat1(self); return m_atan2_bang(dat->imag, dat->real); }
static VALUE nucomp_coerce(VALUE self, VALUE other) { if (k_numeric_p(other) && f_real_p(other)) return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self); if (TYPE(other) == T_COMPLEX) return rb_assoc_new(other, self); rb_raise(rb_eTypeError, "%s can't be coerced into %s", rb_obj_classname(other), rb_obj_classname(self)); return Qnil; }
static VALUE nucomp_conj(VALUE self) { get_dat1(self); return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag)); }
static VALUE nucomp_conj(VALUE self) { get_dat1(self); return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag)); }
static VALUE nucomp_denominator(VALUE self) { get_dat1(self); return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag)); }
static VALUE nucomp_eql_p(VALUE self, VALUE other) { if (k_complex_p(other)) { get_dat2(self, other); return f_boolcast((CLASS_OF(adat->real) == CLASS_OF(bdat->real)) && (CLASS_OF(adat->imag) == CLASS_OF(bdat->imag)) && f_equal_p(self, other)); } return Qfalse; }
static VALUE nucomp_exact_p(VALUE self) { get_dat1(self); return f_boolcast(f_exact_p(dat->real) && f_exact_p(dat->imag)); }
static VALUE nucomp_fdiv(VALUE self, VALUE other) { get_dat1(self); return f_div(f_complex_new2(CLASS_OF(self), f_to_f(dat->real), f_to_f(dat->imag)), other); }
static VALUE nucomp_hash(VALUE self) { get_dat1(self); return f_xor(f_hash(dat->real), f_hash(dat->imag)); }
static VALUE nucomp_imag(VALUE self) { get_dat1(self); return dat->imag; }
static VALUE nucomp_imag(VALUE self) { get_dat1(self); return dat->imag; }
static VALUE nucomp_inexact_p(VALUE self) { return f_boolcast(!nucomp_exact_p(self)); }
static VALUE nucomp_inspect(VALUE self) { VALUE s; s = rb_usascii_str_new2("("); rb_str_concat(s, nucomp_format(self, f_inspect)); rb_str_cat2(s, ")"); return s; }
static VALUE nucomp_abs(VALUE self) { get_dat1(self); return m_hypot(dat->real, dat->imag); }
static VALUE nucomp_marshal_dump(VALUE self) { VALUE a; get_dat1(self); a = rb_assoc_new(dat->real, dat->imag); rb_copy_generic_ivar(a, self); return a; }
static VALUE nucomp_marshal_load(VALUE self, VALUE a) { get_dat1(self); dat->real = RARRAY_PTR(a)[0]; dat->imag = RARRAY_PTR(a)[1]; rb_copy_generic_ivar(self, a); return self; }
static VALUE nucomp_numerator(VALUE self) { VALUE cd; get_dat1(self); cd = f_denominator(self); return f_complex_new2(CLASS_OF(self), f_mul(f_numerator(dat->real), f_div(cd, f_denominator(dat->real))), f_mul(f_numerator(dat->imag), f_div(cd, f_denominator(dat->imag)))); }
static VALUE nucomp_arg(VALUE self) { get_dat1(self); return m_atan2_bang(dat->imag, dat->real); }
static VALUE nucomp_polar(VALUE self) { return rb_assoc_new(f_abs(self), f_arg(self)); }
static VALUE nucomp_div(VALUE self, VALUE other) { if (k_complex_p(other)) { get_dat2(self, other); if (TYPE(adat->real) == T_FLOAT || TYPE(adat->imag) == T_FLOAT || TYPE(bdat->real) == T_FLOAT || TYPE(bdat->imag) == T_FLOAT) { VALUE magn = m_hypot(bdat->real, bdat->imag); VALUE tmp = f_complex_new_bang2(CLASS_OF(self), f_div(bdat->real, magn), f_div(bdat->imag, magn)); return f_div(f_mul(self, f_conj(tmp)), magn); } return f_div(f_mul(self, f_conj(other)), f_abs2(other)); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return f_complex_new2(CLASS_OF(self), f_div(dat->real, other), f_div(dat->imag, other)); } return rb_num_coerce_bin(self, other, '/'); }
static VALUE nucomp_real(VALUE self) { get_dat1(self); return dat->real; }
static VALUE nucomp_rect(VALUE self) { get_dat1(self); return rb_assoc_new(dat->real, dat->imag); }
static VALUE nucomp_rect(VALUE self) { get_dat1(self); return rb_assoc_new(dat->real, dat->imag); }
static VALUE nucomp_to_f(VALUE self) { get_dat1(self); if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) { VALUE s = f_to_s(self); rb_raise(rb_eRangeError, "can't convert %s into Float", StringValuePtr(s)); } return f_to_f(dat->real); }
static VALUE nucomp_to_i(VALUE self) { get_dat1(self); if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) { VALUE s = f_to_s(self); rb_raise(rb_eRangeError, "can't convert %s into Integer", StringValuePtr(s)); } return f_to_i(dat->real); }
static VALUE nucomp_to_r(VALUE self) { get_dat1(self); if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) { VALUE s = f_to_s(self); rb_raise(rb_eRangeError, "can't convert %s into Rational", StringValuePtr(s)); } return f_to_r(dat->real); }