The ObjectSpace
module contains a number of routines that
interact with the garbage collection facility and allow you to traverse all
living objects with an iterator.
ObjectSpace
also provides support for object finalizers, procs
that will be called when a specific object is about to be destroyed by
garbage collection.
include ObjectSpace a = "A" b = "B" c = "C" define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" }) define_finalizer(a, proc {|id| puts "Finalizer two on #{id}" }) define_finalizer(b, proc {|id| puts "Finalizer three on #{id}" })
produces:
Finalizer three on 537763470 Finalizer one on 537763480 Finalizer two on 537763480
Converts an object id to a reference to the object. May not be called on an object id passed as a parameter to a finalizer.
s = "I am a string" #=> "I am a string" r = ObjectSpace._id2ref(s.object_id) #=> "I am a string" r == s #=> true
static VALUE id2ref(VALUE obj, VALUE objid) { #if SIZEOF_LONG == SIZEOF_VOIDP #define NUM2PTR(x) NUM2ULONG(x) #elif SIZEOF_LONG_LONG == SIZEOF_VOIDP #define NUM2PTR(x) NUM2ULL(x) #endif rb_objspace_t *objspace = &rb_objspace; VALUE ptr; void *p0; rb_secure(4); ptr = NUM2PTR(objid); p0 = (void *)ptr; if (ptr == Qtrue) return Qtrue; if (ptr == Qfalse) return Qfalse; if (ptr == Qnil) return Qnil; if (FIXNUM_P(ptr)) return (VALUE)ptr; ptr = objid ^ FIXNUM_FLAG; /* unset FIXNUM_FLAG */ if ((ptr % sizeof(RVALUE)) == (4 << 2)) { ID symid = ptr / sizeof(RVALUE); if (rb_id2name(symid) == 0) rb_raise(rb_eRangeError, "%p is not symbol id value", p0); return ID2SYM(symid); } if (!is_pointer_to_heap(objspace, (void *)ptr) || BUILTIN_TYPE(ptr) > T_FIXNUM || BUILTIN_TYPE(ptr) == T_ICLASS) { rb_raise(rb_eRangeError, "%p is not id value", p0); } if (BUILTIN_TYPE(ptr) == 0 || RBASIC(ptr)->klass == 0) { rb_raise(rb_eRangeError, "%p is recycled object", p0); } return (VALUE)ptr; }
Counts objects for each type.
It returns a hash as: {:TOTAL=>10000, :FREE=>3011, :T_OBJECT=>6, :T_CLASS=>404, …}
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
The contents of the returned hash is implementation defined. It may be changed in future.
This method is not expected to work except C Ruby.
static VALUE count_objects(int argc, VALUE *argv, VALUE os) { rb_objspace_t *objspace = &rb_objspace; size_t counts[T_MASK+1]; size_t freed = 0; size_t total = 0; size_t i; VALUE hash; if (rb_scan_args(argc, argv, "01", &hash) == 1) { if (TYPE(hash) != T_HASH) rb_raise(rb_eTypeError, "non-hash given"); } for (i = 0; i <= T_MASK; i++) { counts[i] = 0; } for (i = 0; i < heaps_used; i++) { RVALUE *p, *pend; p = heaps[i].slot; pend = p + heaps[i].limit; for (;p < pend; p++) { if (p->as.basic.flags) { counts[BUILTIN_TYPE(p)]++; } else { freed++; } } total += heaps[i].limit; } if (hash == Qnil) { hash = rb_hash_new(); } else if (!RHASH_EMPTY_P(hash)) { st_foreach(RHASH_TBL(hash), set_zero, hash); } rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total)); rb_hash_aset(hash, ID2SYM(rb_intern("FREE")), SIZET2NUM(freed)); for (i = 0; i <= T_MASK; i++) { VALUE type; switch (i) { #define COUNT_TYPE(t) case t: type = ID2SYM(rb_intern(#t)); break; COUNT_TYPE(T_NONE); COUNT_TYPE(T_OBJECT); COUNT_TYPE(T_CLASS); COUNT_TYPE(T_MODULE); COUNT_TYPE(T_FLOAT); COUNT_TYPE(T_STRING); COUNT_TYPE(T_REGEXP); COUNT_TYPE(T_ARRAY); COUNT_TYPE(T_HASH); COUNT_TYPE(T_STRUCT); COUNT_TYPE(T_BIGNUM); COUNT_TYPE(T_FILE); COUNT_TYPE(T_DATA); COUNT_TYPE(T_MATCH); COUNT_TYPE(T_COMPLEX); COUNT_TYPE(T_RATIONAL); COUNT_TYPE(T_NIL); COUNT_TYPE(T_TRUE); COUNT_TYPE(T_FALSE); COUNT_TYPE(T_SYMBOL); COUNT_TYPE(T_FIXNUM); COUNT_TYPE(T_UNDEF); COUNT_TYPE(T_NODE); COUNT_TYPE(T_ICLASS); COUNT_TYPE(T_ZOMBIE); #undef COUNT_TYPE default: type = INT2NUM(i); break; } if (counts[i]) rb_hash_aset(hash, type, SIZET2NUM(counts[i])); } return hash; }
Adds aProc as a finalizer, to be called after obj was destroyed.
static VALUE define_final(int argc, VALUE *argv, VALUE os) { rb_objspace_t *objspace = &rb_objspace; VALUE obj, block, table; rb_scan_args(argc, argv, "11", &obj, &block); if (argc == 1) { block = rb_block_proc(); } else if (!rb_respond_to(block, rb_intern("call"))) { rb_raise(rb_eArgError, "wrong type argument %s (should be callable)", rb_obj_classname(block)); } if (!FL_ABLE(obj)) { rb_raise(rb_eArgError, "cannot define finalizer for %s", rb_obj_classname(obj)); } RBASIC(obj)->flags |= FL_FINALIZE; block = rb_ary_new3(2, INT2FIX(rb_safe_level()), block); OBJ_FREEZE(block); if (!finalizer_table) { finalizer_table = st_init_numtable(); } if (st_lookup(finalizer_table, obj, &table)) { rb_ary_push(table, block); } else { table = rb_ary_new3(1, block); RBASIC(table)->klass = 0; st_add_direct(finalizer_table, obj, table); } return block; }
Calls the block once for each living, nonimmediate object in this Ruby
process. If module is specified, calls the block for only those
classes or modules that match (or are a subclass of) module.
Returns the number of objects found. Immediate objects
(Fixnum
s, Symbol
s true
,
false
, and nil
) are never returned. In the
example below, each_object
returns both the numbers we defined
and several constants defined in the Math
module.
a = 102.7 b = 95 # Won't be returned c = 12345678987654321 count = ObjectSpace.each_object(Numeric) {|x| p x } puts "Total count: #{count}"
produces:
12345678987654321 102.7 2.71828182845905 3.14159265358979 2.22044604925031e-16 1.7976931348623157e+308 2.2250738585072e-308 Total count: 7
static VALUE os_each_obj(int argc, VALUE *argv, VALUE os) { VALUE of; rb_secure(4); if (argc == 0) { of = 0; } else { rb_scan_args(argc, argv, "01", &of); } RETURN_ENUMERATOR(os, 1, &of); return os_obj_of(&rb_objspace, of); }