Float objects represent real numbers using the native
architecture's double-precision floating point representation.
Return the modulo after division of flt by other.
6543.21.modulo(137) #=> 104.21 6543.21.modulo(137.24) #=> 92.9299999999996
static VALUE
flo_mod(VALUE x, VALUE y)
{
double fy, mod;
switch (TYPE(y)) {
case T_FIXNUM:
fy = (double)FIX2LONG(y);
break;
case T_BIGNUM:
fy = rb_big2dbl(y);
break;
case T_FLOAT:
fy = RFLOAT_VALUE(y);
break;
default:
return rb_num_coerce_bin(x, y, '%');
}
flodivmod(RFLOAT_VALUE(x), fy, 0, &mod);
return DBL2NUM(mod);
}
Returns a new float which is the product of float and
other.
static VALUE
flo_mul(VALUE x, VALUE y)
{
switch (TYPE(y)) {
case T_FIXNUM:
return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
case T_BIGNUM:
return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
case T_FLOAT:
return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
default:
return rb_num_coerce_bin(x, y, '*');
}
}
Raises float the other power.
static VALUE
flo_pow(VALUE x, VALUE y)
{
switch (TYPE(y)) {
case T_FIXNUM:
return DBL2NUM(pow(RFLOAT_VALUE(x), (double)FIX2LONG(y)));
case T_BIGNUM:
return DBL2NUM(pow(RFLOAT_VALUE(x), rb_big2dbl(y)));
case T_FLOAT:
return DBL2NUM(pow(RFLOAT_VALUE(x), RFLOAT_VALUE(y)));
default:
return rb_num_coerce_bin(x, y, rb_intern("**"));
}
}
Returns a new float which is the sum of float and
other.
static VALUE
flo_plus(VALUE x, VALUE y)
{
switch (TYPE(y)) {
case T_FIXNUM:
return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
case T_BIGNUM:
return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
case T_FLOAT:
return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
default:
return rb_num_coerce_bin(x, y, '+');
}
}
Returns a new float which is the difference of float and
other.
static VALUE
flo_minus(VALUE x, VALUE y)
{
switch (TYPE(y)) {
case T_FIXNUM:
return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
case T_BIGNUM:
return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
case T_FLOAT:
return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
default:
return rb_num_coerce_bin(x, y, '-');
}
}
Returns float, negated.
static VALUE
flo_uminus(VALUE flt)
{
return DBL2NUM(-RFLOAT_VALUE(flt));
}
Returns a new float which is the result of dividing float by
other.
static VALUE
flo_div(VALUE x, VALUE y)
{
long f_y;
double d;
switch (TYPE(y)) {
case T_FIXNUM:
f_y = FIX2LONG(y);
return DBL2NUM(RFLOAT_VALUE(x) / (double)f_y);
case T_BIGNUM:
d = rb_big2dbl(y);
return DBL2NUM(RFLOAT_VALUE(x) / d);
case T_FLOAT:
return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y));
default:
return rb_num_coerce_bin(x, y, '/');
}
}
true if flt is less than other.
static VALUE
flo_lt(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
switch (TYPE(y)) {
case T_FIXNUM:
b = (double)FIX2LONG(y);
break;
case T_BIGNUM:
b = rb_big2dbl(y);
break;
case T_FLOAT:
b = RFLOAT_VALUE(y);
if (isnan(b)) return Qfalse;
break;
default:
return rb_num_coerce_relop(x, y, '<');
}
if (isnan(a)) return Qfalse;
return (a < b)?Qtrue:Qfalse;
}
true if flt is less than or equal to
other.
static VALUE
flo_le(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
switch (TYPE(y)) {
case T_FIXNUM:
b = (double)FIX2LONG(y);
break;
case T_BIGNUM:
b = rb_big2dbl(y);
break;
case T_FLOAT:
b = RFLOAT_VALUE(y);
if (isnan(b)) return Qfalse;
break;
default:
return rb_num_coerce_relop(x, y, rb_intern("<="));
}
if (isnan(a)) return Qfalse;
return (a <= b)?Qtrue:Qfalse;
}
Returns -1, 0, or +1 depending on whether flt is less than, equal
to, or greater than numeric. This is the basis for the tests in
Comparable.
static VALUE
flo_cmp(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
if (isnan(a)) return Qnil;
switch (TYPE(y)) {
case T_FIXNUM:
b = (double)FIX2LONG(y);
break;
case T_BIGNUM:
if (isinf(a)) {
if (a > 0.0) return INT2FIX(1);
else return INT2FIX(-1);
}
b = rb_big2dbl(y);
break;
case T_FLOAT:
b = RFLOAT_VALUE(y);
break;
default:
if (isinf(a) && (!rb_respond_to(y, rb_intern("infinite?")) ||
!RTEST(rb_funcall(y, rb_intern("infinite?"), 0, 0)))) {
if (a > 0.0) return INT2FIX(1);
return INT2FIX(-1);
}
return rb_num_coerce_cmp(x, y, rb_intern("<=>"));
}
return rb_dbl_cmp(a, b);
}
Returns true only if obj has the same value as
flt. Contrast this with Float#eql?, which requires
obj to be a Float.
1.0 == 1 #=> true
static VALUE
flo_eq(VALUE x, VALUE y)
{
volatile double a, b;
switch (TYPE(y)) {
case T_FIXNUM:
b = FIX2LONG(y);
break;
case T_BIGNUM:
b = rb_big2dbl(y);
break;
case T_FLOAT:
b = RFLOAT_VALUE(y);
if (isnan(b)) return Qfalse;
break;
default:
return num_equal(x, y);
}
a = RFLOAT_VALUE(x);
if (isnan(a)) return Qfalse;
return (a == b)?Qtrue:Qfalse;
}
Returns true only if obj has the same value as
flt. Contrast this with Float#eql?, which requires
obj to be a Float.
1.0 == 1 #=> true
static VALUE
flo_eq(VALUE x, VALUE y)
{
volatile double a, b;
switch (TYPE(y)) {
case T_FIXNUM:
b = FIX2LONG(y);
break;
case T_BIGNUM:
b = rb_big2dbl(y);
break;
case T_FLOAT:
b = RFLOAT_VALUE(y);
if (isnan(b)) return Qfalse;
break;
default:
return num_equal(x, y);
}
a = RFLOAT_VALUE(x);
if (isnan(a)) return Qfalse;
return (a == b)?Qtrue:Qfalse;
}
true if flt is greater than other.
static VALUE
flo_gt(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
switch (TYPE(y)) {
case T_FIXNUM:
b = (double)FIX2LONG(y);
break;
case T_BIGNUM:
b = rb_big2dbl(y);
break;
case T_FLOAT:
b = RFLOAT_VALUE(y);
if (isnan(b)) return Qfalse;
break;
default:
return rb_num_coerce_relop(x, y, '>');
}
if (isnan(a)) return Qfalse;
return (a > b)?Qtrue:Qfalse;
}
true if flt is greater than or equal to
other.
static VALUE
flo_ge(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
switch (TYPE(y)) {
case T_FIXNUM:
b = (double)FIX2LONG(y);
break;
case T_BIGNUM:
b = rb_big2dbl(y);
break;
case T_FLOAT:
b = RFLOAT_VALUE(y);
if (isnan(b)) return Qfalse;
break;
default:
return rb_num_coerce_relop(x, y, rb_intern(">="));
}
if (isnan(a)) return Qfalse;
return (a >= b)?Qtrue:Qfalse;
}
Returns the absolute value of flt.
(-34.56).abs #=> 34.56 -34.56.abs #=> 34.56
static VALUE
flo_abs(VALUE flt)
{
double val = fabs(RFLOAT_VALUE(flt));
return DBL2NUM(val);
}
Returns 0 if the value is positive, pi otherwise.
static VALUE
float_arg(VALUE self)
{
if (isnan(RFLOAT_VALUE(self)))
return self;
return rb_call_super(0, 0);
}
Returns 0 if the value is positive, pi otherwise.
static VALUE
float_arg(VALUE self)
{
if (isnan(RFLOAT_VALUE(self)))
return self;
return rb_call_super(0, 0);
}
Returns the smallest Integer greater than or equal to
flt.
1.2.ceil #=> 2 2.0.ceil #=> 2 (-1.2).ceil #=> -1 (-2.0).ceil #=> -2
static VALUE
flo_ceil(VALUE num)
{
double f = ceil(RFLOAT_VALUE(num));
long val;
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = f;
return LONG2FIX(val);
}
MISSING: documentation
static VALUE
flo_coerce(VALUE x, VALUE y)
{
return rb_assoc_new(rb_Float(y), x);
}
static VALUE
float_denominator(VALUE self)
{
double d = RFLOAT_VALUE(self);
if (isinf(d) || isnan(d))
return INT2FIX(1);
return rb_call_super(0, 0);
}
See Numeric#divmod.
static VALUE
flo_divmod(VALUE x, VALUE y)
{
double fy, div, mod;
volatile VALUE a, b;
switch (TYPE(y)) {
case T_FIXNUM:
fy = (double)FIX2LONG(y);
break;
case T_BIGNUM:
fy = rb_big2dbl(y);
break;
case T_FLOAT:
fy = RFLOAT_VALUE(y);
break;
default:
return rb_num_coerce_bin(x, y, rb_intern("divmod"));
}
flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
a = dbl2ival(div);
b = DBL2NUM(mod);
return rb_assoc_new(a, b);
}
Returns true only if obj is a Float with
the same value as flt. Contrast this with Float#==,
which performs type conversions.
1.0.eql?(1) #=> false
static VALUE
flo_eql(VALUE x, VALUE y)
{
if (TYPE(y) == T_FLOAT) {
double a = RFLOAT_VALUE(x);
double b = RFLOAT_VALUE(y);
if (isnan(a) || isnan(b)) return Qfalse;
if (a == b) return Qtrue;
}
return Qfalse;
}
static VALUE
flo_quo(VALUE x, VALUE y)
{
return rb_funcall(x, '/', 1, y);
}
Returns true if flt is a valid IEEE floating point
number (it is not infinite, and nan? is false).
static VALUE
flo_is_finite_p(VALUE num)
{
double value = RFLOAT_VALUE(num);
#if HAVE_FINITE
if (!finite(value))
return Qfalse;
#else
if (isinf(value) || isnan(value))
return Qfalse;
#endif
return Qtrue;
}
Returns the largest integer less than or equal to flt.
1.2.floor #=> 1 2.0.floor #=> 2 (-1.2).floor #=> -2 (-2.0).floor #=> -2
static VALUE
flo_floor(VALUE num)
{
double f = floor(RFLOAT_VALUE(num));
long val;
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = f;
return LONG2FIX(val);
}
Returns a hash code for this float.
static VALUE
flo_hash(VALUE num)
{
double d;
int hash;
d = RFLOAT_VALUE(num);
/* normalize -0.0 to 0.0 */
if (d == 0.0) d = 0.0;
hash = rb_memhash(&d, sizeof(d));
return INT2FIX(hash);
}
Returns nil, -1, or +1 depending on whether flt is
finite, -infinity, or +infinity.
(0.0).infinite? #=> nil (-1.0/0.0).infinite? #=> -1 (+1.0/0.0).infinite? #=> 1
static VALUE
flo_is_infinite_p(VALUE num)
{
double value = RFLOAT_VALUE(num);
if (isinf(value)) {
return INT2FIX( value < 0 ? -1 : 1 );
}
return Qnil;
}
Returns the absolute value of flt.
(-34.56).abs #=> 34.56 -34.56.abs #=> 34.56
static VALUE
flo_abs(VALUE flt)
{
double val = fabs(RFLOAT_VALUE(flt));
return DBL2NUM(val);
}
Return the modulo after division of flt by other.
6543.21.modulo(137) #=> 104.21 6543.21.modulo(137.24) #=> 92.9299999999996
static VALUE
flo_mod(VALUE x, VALUE y)
{
double fy, mod;
switch (TYPE(y)) {
case T_FIXNUM:
fy = (double)FIX2LONG(y);
break;
case T_BIGNUM:
fy = rb_big2dbl(y);
break;
case T_FLOAT:
fy = RFLOAT_VALUE(y);
break;
default:
return rb_num_coerce_bin(x, y, '%');
}
flodivmod(RFLOAT_VALUE(x), fy, 0, &mod);
return DBL2NUM(mod);
}
Returns true if flt is an invalid IEEE floating point
number.
a = -1.0 #=> -1.0 a.nan? #=> false a = 0.0/0.0 #=> NaN a.nan? #=> true
static VALUE
flo_is_nan_p(VALUE num)
{
double value = RFLOAT_VALUE(num);
return isnan(value) ? Qtrue : Qfalse;
}
static VALUE
float_numerator(VALUE self)
{
double d = RFLOAT_VALUE(self);
if (isinf(d) || isnan(d))
return self;
return rb_call_super(0, 0);
}
Returns 0 if the value is positive, pi otherwise.
static VALUE
float_arg(VALUE self)
{
if (isnan(RFLOAT_VALUE(self)))
return self;
return rb_call_super(0, 0);
}
static VALUE
flo_quo(VALUE x, VALUE y)
{
return rb_funcall(x, '/', 1, y);
}
Rounds flt to a given precision in decimal digits (default 0 digits). Precision may be negative. Returns a a floating point number when ndigits is more than one.
1.5.round #=> 2 (-1.5).round #=> -2
static VALUE
flo_round(int argc, VALUE *argv, VALUE num)
{
VALUE nd;
double number, f;
int ndigits = 0, i;
long val;
if (argc > 0 && rb_scan_args(argc, argv, "01", &nd) == 1) {
ndigits = NUM2INT(nd);
}
number = RFLOAT_VALUE(num);
f = 1.0;
i = abs(ndigits);
while (--i >= 0)
f = f*10.0;
if (isinf(f)) {
if (ndigits < 0) number = 0;
}
else {
if (ndigits < 0) number /= f;
else number *= f;
number = round(number);
if (ndigits < 0) number *= f;
else number /= f;
}
if (ndigits > 0) return DBL2NUM(number);
if (!FIXABLE(number)) {
return rb_dbl2big(number);
}
val = number;
return LONG2FIX(val);
}
As flt is already a float, returns self.
static VALUE
flo_to_f(VALUE num)
{
return num;
}
Returns flt truncated to an Integer.
static VALUE
flo_truncate(VALUE num)
{
double f = RFLOAT_VALUE(num);
long val;
if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = f;
return LONG2FIX(val);
}
Returns flt truncated to an Integer.
static VALUE
flo_truncate(VALUE num)
{
double f = RFLOAT_VALUE(num);
long val;
if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = f;
return LONG2FIX(val);
}
static VALUE
float_to_r(VALUE self)
{
VALUE f, n;
float_decode_internal(self, &f, &n);
return f_to_r(f_mul(f, f_expt(INT2FIX(FLT_RADIX), n)));
}
Returns a string containing a representation of self. As well as a fixed or
exponential form of the number, the call may return
“NaN'', “Infinity'', and
“-Infinity''.
static VALUE
flo_to_s(VALUE flt)
{
char buf[32];
double value = RFLOAT_VALUE(flt);
char *p, *e;
if (isinf(value))
return rb_usascii_str_new2(value < 0 ? "-Infinity" : "Infinity");
else if(isnan(value))
return rb_usascii_str_new2("NaN");
snprintf(buf, sizeof(buf), "%#.15g", value); /* ensure to print decimal point */
if (!(e = strchr(buf, 'e'))) {
e = buf + strlen(buf);
}
if (!ISDIGIT(e[-1])) { /* reformat if ended with decimal point (ex 111111111111111.) */
snprintf(buf, sizeof(buf), "%#.14e", value);
if (!(e = strchr(buf, 'e'))) {
e = buf + strlen(buf);
}
}
p = e;
while (p[-1]=='0' && ISDIGIT(p[-2]))
p--;
memmove(p, e, strlen(e)+1);
return rb_usascii_str_new2(buf);
}