Unary Plus—Returns the receiver's value.
static VALUE
num_uplus(VALUE num)
{
return num;
}
Unary Minus—Returns the receiver's value, negated.
static VALUE
num_uminus(VALUE num)
{
VALUE zero;
zero = INT2FIX(0);
do_coerce(&zero, &num, Qtrue);
return rb_funcall(zero, '-', 1, num);
}
Returns zero if num equals other, nil
otherwise.
static VALUE
num_cmp(VALUE x, VALUE y)
{
if (x == y) return INT2FIX(0);
return Qnil;
}
Returns the absolute value of num.
12.abs #=> 12 (-34.56).abs #=> 34.56 -34.56.abs #=> 34.56
static VALUE
num_abs(VALUE num)
{
if (RTEST(rb_funcall(num, '<', 1, INT2FIX(0)))) {
return rb_funcall(num, rb_intern("-@"), 0);
}
return num;
}
Returns 0 if the value is positive, pi otherwise.
static VALUE
numeric_arg(VALUE self)
{
if (f_positive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
Returns 0 if the value is positive, pi otherwise.
static VALUE
numeric_arg(VALUE self)
{
if (f_positive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
Returns the smallest Integer greater than or equal to
num. Class Numeric achieves
this by converting itself to a Float then invoking
Float#ceil.
1.ceil #=> 1 1.2.ceil #=> 2 (-1.2).ceil #=> -1 (-1.0).ceil #=> -1
static VALUE
num_ceil(VALUE num)
{
return flo_ceil(rb_Float(num));
}
If aNumeric is the same type as num, returns an array
containing aNumeric and num. Otherwise, returns an array
with both aNumeric and num represented as
Float objects. This coercion mechanism is used by Ruby to
handle mixed-type numeric operations: it is intended to find a compatible
common type between the two operands of the operator.
1.coerce(2.5) #=> [2.5, 1.0] 1.2.coerce(3) #=> [3.0, 1.2] 1.coerce(2) #=> [2, 1]
static VALUE
num_coerce(VALUE x, VALUE y)
{
if (CLASS_OF(x) == CLASS_OF(y))
return rb_assoc_new(y, x);
x = rb_Float(x);
y = rb_Float(y);
return rb_assoc_new(y, x);
}
static VALUE
numeric_denominator(VALUE self)
{
return f_denominator(f_to_r(self));
}
Uses / to perform division, then converts the result to an
integer. Numeric does not define the / operator;
this is left to subclasses.
static VALUE
num_div(VALUE x, VALUE y)
{
if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
return num_floor(rb_funcall(x, '/', 1, y));
}
Returns an array containing the quotient and modulus obtained by dividing
num by aNumeric. If q, r = x.divmod(y), then
q = floor(float(x)/float(y)) x = q*y + r
The quotient is rounded toward -infinity, as shown in the following table:
a | b | a.divmod(b) | a/b | a.modulo(b) | a.remainder(b) ------+-----+---------------+---------+-------------+--------------- 13 | 4 | 3, 1 | 3 | 1 | 1 ------+-----+---------------+---------+-------------+--------------- 13 | -4 | -4, -3 | -3 | -3 | 1 ------+-----+---------------+---------+-------------+--------------- -13 | 4 | -4, 3 | -4 | 3 | -1 ------+-----+---------------+---------+-------------+--------------- -13 | -4 | 3, -1 | 3 | -1 | -1 ------+-----+---------------+---------+-------------+--------------- 11.5 | 4 | 2, 3.5 | 2.875 | 3.5 | 3.5 ------+-----+---------------+---------+-------------+--------------- 11.5 | -4 | -3, -0.5 | -2.875 | -0.5 | 3.5 ------+-----+---------------+---------+-------------+--------------- -11.5 | 4 | -3, 0.5 | -2.875 | 0.5 | -3.5 ------+-----+---------------+---------+-------------+--------------- -11.5 | -4 | 2, -3.5 | 2.875 | -3.5 | -3.5
Examples
11.divmod(3) #=> [3, 2] 11.divmod(-3) #=> [-4, -1] 11.divmod(3.5) #=> [3, 0.5] (-11).divmod(3.5) #=> [-4, 3.0] (11.5).divmod(3.5) #=> [3, 1.0]
static VALUE
num_divmod(VALUE x, VALUE y)
{
return rb_assoc_new(num_div(x, y), rb_funcall(x, '%', 1, y));
}
Returns true if num and numeric are the same
type and have equal values.
1 == 1.0 #=> true 1.eql?(1.0) #=> false (1.0).eql?(1.0) #=> true
static VALUE
num_eql(VALUE x, VALUE y)
{
if (TYPE(x) != TYPE(y)) return Qfalse;
return rb_equal(x, y);
}
Returns float division.
static VALUE
num_fdiv(VALUE x, VALUE y)
{
return rb_funcall(rb_Float(x), '/', 1, y);
}
Returns the largest integer less than or equal to num.
Numeric implements this by converting anInteger to a
Float and invoking Float#floor.
1.floor #=> 1 (-1).floor #=> -1
static VALUE
num_floor(VALUE num)
{
return flo_floor(rb_Float(num));
}
Returns true if num is an Integer
(including Fixnum and Bignum).
static VALUE
num_int_p(VALUE num)
{
return Qfalse;
}
Returns the absolute value of num.
12.abs #=> 12 (-34.56).abs #=> 34.56 -34.56.abs #=> 34.56
static VALUE
num_abs(VALUE num)
{
if (RTEST(rb_funcall(num, '<', 1, INT2FIX(0)))) {
return rb_funcall(num, rb_intern("-@"), 0);
}
return num;
}
Equivalent to num.divmod(aNumeric).
static VALUE
num_modulo(VALUE x, VALUE y)
{
return rb_funcall(x, '%', 1, y);
}
Returns num if num is not zero, nil
otherwise. This behavior is useful when chaining comparisons:
a = %w( z Bb bB bb BB a aA Aa AA A ) b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b } b #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
static VALUE
num_nonzero_p(VALUE num)
{
if (RTEST(rb_funcall(num, rb_intern("zero?"), 0, 0))) {
return Qnil;
}
return num;
}
static VALUE
numeric_numerator(VALUE self)
{
return f_numerator(f_to_r(self));
}
Returns 0 if the value is positive, pi otherwise.
static VALUE
numeric_arg(VALUE self)
{
if (f_positive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
static VALUE
numeric_polar(VALUE self)
{
return rb_assoc_new(f_abs(self), f_arg(self));
}
Returns most exact division (rational for integers, float for floats).
static VALUE
num_quo(VALUE x, VALUE y)
{
return rb_funcall(rb_rational_raw1(x), '/', 1, y);
}
Returns true if num is a Real (i.e. non
Complex).
static VALUE
num_real_p(VALUE num)
{
return Qtrue;
}
static VALUE
numeric_rect(VALUE self)
{
return rb_assoc_new(self, INT2FIX(0));
}
static VALUE
numeric_rect(VALUE self)
{
return rb_assoc_new(self, INT2FIX(0));
}
If num and numeric have different signs, returns
mod-numeric; otherwise, returns mod. In both
cases mod is the value
num.modulo(numeric). The
differences between remainder and modulo (%) are
shown in the table under Numeric#divmod.
static VALUE
num_remainder(VALUE x, VALUE y)
{
VALUE z = rb_funcall(x, '%', 1, y);
if ((!rb_equal(z, INT2FIX(0))) &&
((RTEST(rb_funcall(x, '<', 1, INT2FIX(0))) &&
RTEST(rb_funcall(y, '>', 1, INT2FIX(0)))) ||
(RTEST(rb_funcall(x, '>', 1, INT2FIX(0))) &&
RTEST(rb_funcall(y, '<', 1, INT2FIX(0)))))) {
return rb_funcall(z, '-', 1, y);
}
return z;
}
Rounds num to a given precision in decimal digits (default 0
digits). Precision may be negative. Returns a a floating point number when
ndigits is more than one. Numeric implements this by
converting itself to a Float and invoking
Float#round.
static VALUE
num_round(int argc, VALUE* argv, VALUE num)
{
return flo_round(argc, argv, rb_Float(num));
}
Trap attempts to add methods to Numeric objects. Always raises
a TypeError
static VALUE
num_sadded(VALUE x, VALUE name)
{
ID mid = rb_to_id(name);
/* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */
/* Numerics should be values; singleton_methods should not be added to them */
rb_remove_method_id(rb_singleton_class(x), mid);
rb_raise(rb_eTypeError,
"can't define singleton method \"%s\" for %s",
rb_id2name(mid),
rb_obj_classname(x));
return Qnil; /* not reached */
}
Invokes block with the sequence of numbers starting at
num, incremented by step on each call. The loop finishes
when the value to be passed to the block is greater than limit (if
step is positive) or less than limit (if step is
negative). If all the arguments are integers, the loop operates using an
integer counter. If any of the arguments are floating point numbers, all
are converted to floats, and the loop is executed floor(n + n*epsilon)+
1 times, where n = (limit - num)/step. Otherwise, the loop
starts at num, uses either the < or
> operator to compare the counter against limit,
and increments itself using the + operator.
1.step(10, 2) { |i| print i, " " } Math::E.step(Math::PI, 0.2) { |f| print f, " " }
produces:
1 3 5 7 9 2.71828182845905 2.91828182845905 3.11828182845905
static VALUE
num_step(int argc, VALUE *argv, VALUE from)
{
VALUE to, step;
RETURN_ENUMERATOR(from, argc, argv);
if (argc == 1) {
to = argv[0];
step = INT2FIX(1);
}
else {
if (argc == 2) {
to = argv[0];
step = argv[1];
}
else {
rb_raise(rb_eArgError, "wrong number of arguments");
}
if (rb_equal(step, INT2FIX(0))) {
rb_raise(rb_eArgError, "step can't be 0");
}
}
if (FIXNUM_P(from) && FIXNUM_P(to) && FIXNUM_P(step)) {
long i, end, diff;
i = FIX2LONG(from);
end = FIX2LONG(to);
diff = FIX2LONG(step);
if (diff > 0) {
while (i <= end) {
rb_yield(LONG2FIX(i));
i += diff;
}
}
else {
while (i >= end) {
rb_yield(LONG2FIX(i));
i += diff;
}
}
}
else if (!ruby_float_step(from, to, step, Qfalse)) {
VALUE i = from;
ID cmp;
if (RTEST(rb_funcall(step, '>', 1, INT2FIX(0)))) {
cmp = '>';
}
else {
cmp = '<';
}
for (;;) {
if (RTEST(rb_funcall(i, cmp, 1, to))) break;
rb_yield(i);
i = rb_funcall(i, '+', 1, step);
}
}
return from;
}
static VALUE
numeric_to_c(VALUE self)
{
return rb_complex_new1(self);
}
Invokes the child class's to_i method to convert
num to an integer.
static VALUE
num_to_int(VALUE num)
{
return rb_funcall(num, id_to_i, 0, 0);
}