Ractor is a Actor-model abstraction for Ruby that provides thread-safe parallel execution.
::new can make new Ractor and it will run in parallel.
# The simplest ractor r = Ractor.new {puts "I am in Ractor!"} r.take # wait it to finish # here "I am in Ractor!" would be printed
Ractors do not share usual objects, so the some kind of thread-safety concerns such as data-race, race-conditions are not available on multi-ractor programming.
To achieve this, ractors severely limit object sharing between different ractors. For example, unlike threads, ractors can't access each other's objects, nor any objects through variables of the outer scope.
a = 1 r = Ractor.new {puts "I am in Ractor! a=#{a}"} # fails immediately with # ArgumentError (can not isolate a Proc because it accesses outer variables (a).)
On CRuby (the default implementation), Global Virtual Machine Lock (GVL) is held per ractor, so ractors are performed in parallel without locking each other.
Instead of accessing the shared state, the objects should be passed to and from ractors via sending and receiving objects as messages.
a = 1 r = Ractor.new do a_in_ractor = receive # receive blocks till somebody will pass message puts "I am in Ractor! a=#{a_in_ractor}" end r.send(a) # pass it r.take # here "I am in Ractor! a=1" would be printed
There are two pairs of methods for sending/receiving messages:
Object#send and ::receive for when the sender knows the receiver (push);
Ractor.yield and Ractor#take for when the receiver knows the sender (pull);
In addition to that, an argument to ::new would be passed to block and available there as if received by ::receive, and the last block value would be sent outside of the ractor as if sent by Ractor.yield.
A little demonstration on a classic ping-pong:
server = Ractor.new do puts "Server starts: #{self.inspect}" puts "Server sends: ping" Ractor.yield 'ping' # The server doesn't know the receiver and sends to whoever interested received = Ractor.receive # The server doesn't know the sender and receives from whoever sent puts "Server received: #{received}" end client = Ractor.new(server) do |srv| # The server is sent inside client, and available as srv puts "Client starts: #{self.inspect}" received = srv.take # The Client takes a message specifically from the server puts "Client received from " "#{srv.inspect}: #{received}" puts "Client sends to " "#{srv.inspect}: pong" srv.send 'pong' # The client sends a message specifically to the server end [client, server].each(&:take) # Wait till they both finish
This will output:
Server starts: #<Ractor:#2 test.rb:1 running> Server sends: ping Client starts: #<Ractor:#3 test.rb:8 running> Client received from #<Ractor:#2 rac.rb:1 blocking>: ping Client sends to #<Ractor:#2 rac.rb:1 blocking>: pong Server received: pong
It is said that Ractor receives messages via the incoming port, and sends them to the outgoing port. Either one can be disabled with Ractor#close_incoming and Ractor#close_outgoing respectively. If a ractor terminated, its ports will be closed automatically.
When the object is sent to and from the ractor, it is important to understand whether the object is shareable or unshareable. Most of objects are unshareable objects.
Shareable objects are basically those which can be used by several threads without compromising thread-safety; e.g. immutable ones. Ractor.shareable? allows to check this, and Ractor.make_shareable tries to make object shareable if it is not.
Ractor.shareable?(1) #=> true -- numbers and other immutable basic values are Ractor.shareable?('foo') #=> false, unless the string is frozen due to # freeze_string_literals: true Ractor.shareable?('foo'.freeze) #=> true ary = ['hello', 'world'] ary.frozen? #=> false ary[0].frozen? #=> false Ractor.make_shareable(ary) ary.frozen? #=> true ary[0].frozen? #=> true ary[1].frozen? #=> true
When a shareable object is sent (via send or Ractor.yield), no additional processing happens, and it just becomes usable by both ractors. When an unshareable object is sent, it can be either copied or moved. The first is the default, and it makes the object's full copy by deep cloning of non-shareable parts of its structure.
data = ['foo', 'bar'.freeze] r = Ractor.new do data2 = Ractor.receive puts "In ractor: #{data2.object_id}, #{data2[0].object_id}, #{data2[1].object_id}" end r.send(data) r.take puts "Outside : #{data.object_id}, #{data[0].object_id}, #{data[1].object_id}"
This will output:
In ractor: 340, 360, 320 Outside : 380, 400, 320
(Note that object id of both array and non-frozen string inside array have changed inside the ractor, showing it is different objects. But the second array's element, which is a shareable frozen string, has the same object_id.)
Deep cloning of the objects may be slow, and sometimes impossible.
Alternatively, move: true
may be used on sending. This will
move the object to the receiving ractor, making it inaccessible
for a sending ractor.
data = ['foo', 'bar'] r = Ractor.new do data_in_ractor = Ractor.receive puts "In ractor: #{data_in_ractor.object_id}, #{data_in_ractor[0].object_id}" end r.send(data, move: true) r.take puts "Outside: moved? #{Ractor::MovedObject === data}" puts "Outside: #{data.inspect}"
This will output:
In ractor: 100, 120 Outside: moved? true test.rb:9:in `method_missing': can not send any methods to a moved object (Ractor::MovedError)
Notice that even inspect
(and more basic methods like
__id__
) is inaccessible on a moved object.
Besides frozen objects, there are shareable objects. Class and Module objects are shareable so the Class/Module definitons are shared between ractors. Ractor objects are also shareable objects. All operations for the shareable mutable objects are thread-safe, so the thread-safety property will be kept. We can not define mutable shareable objects in Ruby, but C extensions can introduce them.
It is prohibited to access instance variables of mutable shareable objects (especially Modules and classes) from ractors other than main:
class C class << self attr_accessor :tricky end end C.tricky = 'test' r = Ractor.new(C) do |cls| puts "I see #{cls}" puts "I can't see #{cls.tricky}" end r.take # I see C # can not access instance variables of classes/modules from non-main Ractors (RuntimeError)
Ractors can access constants if they are shareable. The main Ractor is the only one that can access non-shareable constants.
GOOD = 'good'.freeze BAD = 'bad' r = Ractor.new do puts "GOOD=#{GOOD}" puts "BAD=#{BAD}" end r.take # GOOD=good # can not access non-shareable objects in constant Object::BAD by non-main Ractor. (NameError) # Consider the same C class from above r = Ractor.new do puts "I see #{C}" puts "I can't see #{C.tricky}" end r.take # I see C # can not access instance variables of classes/modules from non-main Ractors (RuntimeError)
See also the description of # shareable_constant_value
pragma
in Comments syntax explanation.
Each ractor creates its own thread. New threads can be created from inside ractor (and, on CRuby, sharing GVL with other threads of this ractor).
r = Ractor.new do a = 1 Thread.new {puts "Thread in ractor: a=#{a}"}.join end r.take # Here "Thread in ractor: a=1" will be printed
In examples below, sometimes we use the following method to wait till ractors that are not currently blocked will finish (or process till next blocking) method.
def wait sleep(0.1) end
It is **only for demonstration purposes** and shouldn't be used in a real code. Most of the times, just take is used to wait till ractor will finish.
See Ractor desgin doc for more details.
Returns total count of Ractors currently running.
Ractor.count #=> 1 r = Ractor.new(name: 'example') { Ractor.yield(1) } Ractor.count #=> 2 (main + example ractor) r.take # wait for Ractor.yield(1) r.take # wait till r will finish Ractor.count #=> 1
# File ractor.rb, line 287 def self.count __builtin_cexpr! %q{ ULONG2NUM(GET_VM()->ractor.cnt); } end
Returns the currently executing Ractor.
Ractor.current #=> #<Ractor:#1 running>
# File ractor.rb, line 273 def self.current __builtin_cexpr! %q{ rb_ractor_self(rb_ec_ractor_ptr(ec)); } end
Create a new Ractor with args and a block.
A block (Proc) will be isolated (can't access to outer variables).
self
inside the block will refer to the current Ractor.
r = Ractor.new { puts "Hi, I am #{self.inspect}" } r.take # Prints "Hi, I am #<Ractor:#2 test.rb:1 running>"
args
passed to the method would be propagated to block args by
the same rules as objects passed through send/Ractor.receive: if
args
are not shareable, they will be copied (via deep cloning,
which might be inefficient).
arg = [1, 2, 3] puts "Passing: #{arg} (##{arg.object_id})" r = Ractor.new(arg) {|received_arg| puts "Received: #{received_arg} (##{received_arg.object_id})" } r.take # Prints: # Passing: [1, 2, 3] (#280) # Received: [1, 2, 3] (#300)
Ractor's name
can be set for debugging purposes:
r = Ractor.new(name: 'my ractor') {} p r #=> #<Ractor:#3 my ractor test.rb:1 terminated>
# File ractor.rb, line 262 def self.new(*args, name: nil, &block) b = block # TODO: builtin bug raise ArgumentError, "must be called with a block" unless block loc = caller_locations(1, 1).first loc = "#{loc.path}:#{loc.lineno}" __builtin_ractor_create(loc, name, args, b) end
Receive an incoming message from the current Ractor's incoming port's queue, which was sent there by send.
r = Ractor.new do v1 = Ractor.receive puts "Received: #{v1}" end r.send('message1') r.take # Here will be printed: "Received: message1"
Alternatively, private instance method receive
may be used:
r = Ractor.new do v1 = receive puts "Received: #{v1}" end r.send('message1') r.take # Here will be printed: "Received: message1"
The method blocks if the queue is empty.
r = Ractor.new do puts "Before first receive" v1 = Ractor.receive puts "Received: #{v1}" v2 = Ractor.receive puts "Received: #{v2}" end wait puts "Still not received" r.send('message1') wait puts "Still received only one" r.send('message2') r.take
Output:
Before first receive Still not received Received: message1 Still received only one Received: message2
If close_incoming was called on the ractor, the method raises Ractor::ClosedError if there are no more messages in incoming queue:
Ractor.new do close_incoming receive end wait # in `receive': The incoming port is already closed => #<Ractor:#2 test.rb:1 running> (Ractor::ClosedError)
# File ractor.rb, line 415 def self.receive __builtin_cexpr! %q{ ractor_receive(ec, rb_ec_ractor_ptr(ec)) } end
Waits for the first ractor to have something in its outgoing port, reads from this ractor, and returns that ractor and the object received.
r1 = Ractor.new {Ractor.yield 'from 1'} r2 = Ractor.new {Ractor.yield 'from 2'} r, obj = Ractor.select(r1, r2) puts "received #{obj.inspect} from #{r.inspect}" # Prints: received "from 1" from #<Ractor:#2 test.rb:1 running>
If one of the given ractors is the current ractor, and it would be
selected, r
will contain :receive
symbol instead
of the ractor object.
r1 = Ractor.new(Ractor.current) do |main| main.send 'to main' Ractor.yield 'from 1' end r2 = Ractor.new do Ractor.yield 'from 2' end r, obj = Ractor.select(r1, r2, Ractor.current) puts "received #{obj.inspect} from #{r.inspect}" # Prints: received "to main" from :receive
If yield_value
is provided, that value may be yielded if
another Ractor is calling take. In this case, the
pair [:yield, nil]
would be returned:
r1 = Ractor.new(Ractor.current) do |main| puts "Received from main: #{main.take}" end puts "Trying to select" r, obj = Ractor.select(r1, Ractor.current, yield_value: 123) wait puts "Received #{obj.inspect} from #{r.inspect}"
This will print:
Trying to select Received from main: 123 Received nil from :yield
move
boolean flag defines whether yielded value should be
copied (default) or moved.
# File ractor.rb, line 342 def self.select(*ractors, yield_value: yield_unspecified = true, move: false) raise ArgumentError, 'specify at least one ractor or `yield_value`' if yield_unspecified && ractors.empty? __builtin_cstmt! %q{ const VALUE *rs = RARRAY_CONST_PTR_TRANSIENT(ractors); VALUE rv; VALUE v = ractor_select(ec, rs, RARRAY_LENINT(ractors), yield_unspecified == Qtrue ? Qundef : yield_value, (bool)RTEST(move) ? true : false, &rv); return rb_ary_new_from_args(2, rv, v); } end