Maintenance of Ruby 2.0.0 ended on February 24, 2016. Read more
The Process
module is a collection of methods used to
manipulate processes.
see ::setpriority
see ::setpriority
see ::setpriority
Maximum size of the process's virtual memory (address space) in bytes.
see the system getrlimit(2) manual for details.
Maximum size of the core file.
see the system getrlimit(2) manual for details.
CPU time limit in seconds.
see the system getrlimit(2) manual for details.
Maximum size of the process's data segment.
see the system getrlimit(2) manual for details.
Maximum size of files that the process may create.
see the system getrlimit(2) manual for details.
Maximum number of bytes of memory that may be locked into RAM.
see the system getrlimit(2) manual for details.
Specifies the limit on the number of bytes that can be allocated for POSIX message queues for the real user ID of the calling process.
see the system getrlimit(2) manual for details.
Specifies a ceiling to which the process's nice value can be raised.
see the system getrlimit(2) manual for details.
Specifies a value one greater than the maximum file descriptor number that can be opened by this process.
see the system getrlimit(2) manual for details.
The maximum number of processes that can be created for the real user ID of the calling process.
see the system getrlimit(2) manual for details.
Specifies the limit (in pages) of the process's resident set.
see the system getrlimit(2) manual for details.
Specifies a ceiling on the real-time priority that may be set for this process.
see the system getrlimit(2) manual for details.
Specifies limit on CPU time this process scheduled under a real-time scheduling policy can consume.
see the system getrlimit(2) manual for details.
Maximum size of the socket buffer.
Specifies a limit on the number of signals that may be queued for the real user ID of the calling process.
see the system getrlimit(2) manual for details.
Maximum size of the stack, in bytes.
see the system getrlimit(2) manual for details.
see ::setrlimit
see ::setrlimit
see ::setrlimit
see ::wait
see ::wait
Terminate execution immediately, effectively by calling
Kernel.exit(false)
. If msg is given, it is written to
STDERR prior to terminating.
VALUE rb_f_abort(int argc, VALUE *argv) { rb_secure(4); if (argc == 0) { if (!NIL_P(GET_THREAD()->errinfo)) { ruby_error_print(); } rb_exit(EXIT_FAILURE); } else { VALUE args[2]; rb_scan_args(argc, argv, "1", &args[1]); StringValue(argv[0]); rb_io_puts(argc, argv, rb_stderr); args[0] = INT2NUM(EXIT_FAILURE); rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit)); } UNREACHABLE; }
Detach the process from controlling terminal and run in the background as system daemon. Unless the argument nochdir is true (i.e. non false), it changes the current working directory to the root (“/”). Unless the argument noclose is true, daemon() will redirect standard input, standard output and standard error to /dev/null. Return zero on success, or raise one of Errno::*.
static VALUE proc_daemon(int argc, VALUE *argv) { VALUE nochdir, noclose; int n; rb_secure(2); rb_scan_args(argc, argv, "02", &nochdir, &noclose); prefork(); n = rb_daemon(RTEST(nochdir), RTEST(noclose)); if (n < 0) rb_sys_fail("daemon"); return INT2FIX(n); }
Some operating systems retain the status of terminated child processes
until the parent collects that status (normally using some variant of
wait()
. If the parent never collects this status, the child
stays around as a zombie process. Process::detach
prevents this by setting up a separate Ruby thread whose sole job is to
reap the status of the process pid when it terminates. Use
detach
only when you do not intent to explicitly wait for the
child to terminate.
The waiting thread returns the exit status of the detached process when it
terminates, so you can use Thread#join
to know the result. If
specified pid is not a valid child process ID, the thread returns
nil
immediately.
The waiting thread has pid
method which returns the pid.
In this first example, we don't reap the first child process, so it appears as a zombie in the process status display.
p1 = fork { sleep 0.1 } p2 = fork { sleep 0.2 } Process.waitpid(p2) sleep 2 system("ps -ho pid,state -p #{p1}")
produces:
27389 Z
In the next example, Process::detach
is used to reap the child
automatically.
p1 = fork { sleep 0.1 } p2 = fork { sleep 0.2 } Process.detach(p1) Process.waitpid(p2) sleep 2 system("ps -ho pid,state -p #{p1}")
(produces no output)
static VALUE proc_detach(VALUE obj, VALUE pid) { rb_secure(2); return rb_detach_process(NUM2PIDT(pid)); }
Returns the effective group ID for this process. Not available on all platforms.
Process.egid #=> 500
static VALUE proc_getegid(VALUE obj) { rb_gid_t egid = getegid(); return GIDT2NUM(egid); }
Sets the effective group ID for this process. Not available on all platforms.
static VALUE proc_setegid(VALUE obj, VALUE egid) { #if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID) rb_gid_t gid; #endif check_gid_switch(); #if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID) gid = OBJ2GID(egid); #endif #if defined(HAVE_SETRESGID) if (setresgid(-1, gid, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETREGID if (setregid(-1, gid) < 0) rb_sys_fail(0); #elif defined HAVE_SETEGID if (setegid(gid) < 0) rb_sys_fail(0); #elif defined HAVE_SETGID if (gid == getgid()) { if (setgid(gid) < 0) rb_sys_fail(0); } else { rb_notimplement(); } #else rb_notimplement(); #endif return egid; }
Returns the effective user ID for this process.
Process.euid #=> 501
static VALUE proc_geteuid(VALUE obj) { rb_uid_t euid = geteuid(); return UIDT2NUM(euid); }
Sets the effective user ID for this process. Not available on all platforms.
static VALUE proc_seteuid_m(VALUE mod, VALUE euid) { check_uid_switch(); proc_seteuid(OBJ2UID(euid)); return euid; }
Replaces the current process by running the given external command. command… is one of following forms.
commandline : command line string which is passed to the standard shell cmdname, arg1, ... : command name and one or more arguments (no shell) [cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell)
If single string is given as the command, it is taken as a command line that is subject to shell expansion before being executed.
The standard shell means always "/bin/sh"
on
Unix-like systems, ENV["RUBYSHELL"]
or
ENV["COMSPEC"]
on Windows NT series, and similar.
If two or more string
given, the first is taken as a command
name and the rest are passed as parameters to command with no shell
expansion.
If a two-element array at the beginning of the command, the first element
is the command to be executed, and the second argument is used as the
argv[0]
value, which may show up in process listings.
In order to execute the command, one of the exec(2)
system
calls is used, so the running command may inherit some of the environment
of the original program (including open file descriptors). This behavior is
modified by env and options. See spawn
for details.
Raises SystemCallError if the command
couldn't execute (typically Errno::ENOENT
when it was not
found).
This method modifies process attributes according to options
(details described in spawn
) before exec(2)
system call. The modified attributes may be retained when
exec(2)
system call fails. For example, hard resource limits
is not restorable. If it is not acceptable, consider to create a child
process using spawn
or system
.
exec "echo *" # echoes list of files in current directory # never get here exec "echo", "*" # echoes an asterisk # never get here
VALUE rb_f_exec(int argc, VALUE *argv) { VALUE execarg_obj, fail_str; struct rb_execarg *eargp; #define CHILD_ERRMSG_BUFLEN 80 char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' }; execarg_obj = rb_execarg_new(argc, argv, TRUE); eargp = rb_execarg_get(execarg_obj); rb_execarg_fixup(execarg_obj); fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name; #if defined(__APPLE__) || defined(__HAIKU__) rb_exec_without_timer_thread(eargp, errmsg, sizeof(errmsg)); #else rb_exec_async_signal_safe(eargp, errmsg, sizeof(errmsg)); #endif RB_GC_GUARD(execarg_obj); if (errmsg[0]) rb_sys_fail(errmsg); rb_sys_fail_str(fail_str); return Qnil; /* dummy */ }
Initiates the termination of the Ruby script by raising the
SystemExit
exception. This exception may be caught. The
optional parameter is used to return a status code to the invoking
environment. true
and FALSE
of status
means success and failure respectively. The interpretation of other
integer values are system dependent.
begin exit puts "never get here" rescue SystemExit puts "rescued a SystemExit exception" end puts "after begin block"
produces:
rescued a SystemExit exception after begin block
Just prior to termination, Ruby executes any at_exit
functions
(see Kernel::at_exit) and runs any object finalizers (see ObjectSpace.define_finalizer).
at_exit { puts "at_exit function" } ObjectSpace.define_finalizer("string", proc { puts "in finalizer" }) exit
produces:
at_exit function in finalizer
VALUE rb_f_exit(int argc, VALUE *argv) { VALUE status; int istatus; rb_secure(4); if (argc > 0 && rb_scan_args(argc, argv, "01", &status) == 1) { istatus = exit_status_code(status); } else { istatus = EXIT_SUCCESS; } rb_exit(istatus); UNREACHABLE; }
Exits the process immediately. No exit handlers are run. status is returned to the underlying system as the exit status.
Process.exit!(true)
static VALUE rb_f_exit_bang(int argc, VALUE *argv, VALUE obj) { VALUE status; int istatus; rb_secure(4); if (argc > 0 && rb_scan_args(argc, argv, "01", &status) == 1) { istatus = exit_status_code(status); } else { istatus = EXIT_FAILURE; } _exit(istatus); UNREACHABLE; }
Creates a subprocess. If a block is specified, that block is run in the
subprocess, and the subprocess terminates with a status of zero. Otherwise,
the fork
call returns twice, once in the parent, returning the
process ID of the child, and once in the child, returning nil. The
child process can exit using Kernel.exit!
to avoid running any
at_exit
functions. The parent process should use
Process.wait
to collect the termination statuses of its
children or use Process.detach
to register disinterest in
their status; otherwise, the operating system may accumulate zombie
processes.
The thread calling fork is the only thread in the created child process. fork doesn't copy other threads.
If fork is not usable, Process.respond_to?(:fork) returns false.
static VALUE rb_f_fork(VALUE obj) { rb_pid_t pid; rb_secure(2); switch (pid = rb_fork_ruby(NULL)) { case 0: rb_thread_atfork(); if (rb_block_given_p()) { int status; rb_protect(rb_yield, Qundef, &status); ruby_stop(status); } return Qnil; case -1: rb_sys_fail("fork(2)"); return Qnil; default: return PIDT2NUM(pid); } }
Returns the process group ID for the given process id. Not available on all platforms.
Process.getpgid(Process.ppid()) #=> 25527
static VALUE proc_getpgid(VALUE obj, VALUE pid) { rb_pid_t i; rb_secure(2); i = getpgid(NUM2PIDT(pid)); if (i < 0) rb_sys_fail(0); return PIDT2NUM(i); }
Returns the process group ID for this process. Not available on all platforms.
Process.getpgid(0) #=> 25527 Process.getpgrp #=> 25527
static VALUE proc_getpgrp(void) { rb_pid_t pgrp; rb_secure(2); #if defined(HAVE_GETPGRP) && defined(GETPGRP_VOID) pgrp = getpgrp(); if (pgrp < 0) rb_sys_fail(0); return PIDT2NUM(pgrp); #else /* defined(HAVE_GETPGID) */ pgrp = getpgid(0); if (pgrp < 0) rb_sys_fail(0); return PIDT2NUM(pgrp); #endif }
Gets the scheduling priority for specified process, process group, or user.
kind indicates the kind of entity to find: one of
Process::PRIO_PGRP
, Process::PRIO_USER
, or
Process::PRIO_PROCESS
. integer is an id indicating
the particular process, process group, or user (an id of 0 means
current). Lower priorities are more favorable for scheduling. Not
available on all platforms.
Process.getpriority(Process::PRIO_USER, 0) #=> 19 Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19
static VALUE proc_getpriority(VALUE obj, VALUE which, VALUE who) { int prio, iwhich, iwho; rb_secure(2); iwhich = NUM2INT(which); iwho = NUM2INT(who); errno = 0; prio = getpriority(iwhich, iwho); if (errno) rb_sys_fail(0); return INT2FIX(prio); }
Gets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.
resource indicates the kind of resource to limit. It is specified
as a symbol such as :CORE
, a string such as
"CORE"
or a constant such as
Process::RLIMIT_CORE
. See ::setrlimit for details.
cur_limit and max_limit may be
Process::RLIM_INFINITY
, Process::RLIM_SAVED_MAX
or Process::RLIM_SAVED_CUR
. See ::setrlimit and the system
getrlimit(2) manual for details.
static VALUE proc_getrlimit(VALUE obj, VALUE resource) { struct rlimit rlim; rb_secure(2); if (getrlimit(rlimit_resource_type(resource), &rlim) < 0) { rb_sys_fail("getrlimit"); } return rb_assoc_new(RLIM2NUM(rlim.rlim_cur), RLIM2NUM(rlim.rlim_max)); }
Returns the session ID for for the given process id. If not give, return current process sid. Not available on all platforms.
Process.getsid() #=> 27422 Process.getsid(0) #=> 27422 Process.getsid(Process.pid()) #=> 27422
static VALUE proc_getsid(int argc, VALUE *argv) { rb_pid_t sid; VALUE pid; rb_secure(2); rb_scan_args(argc, argv, "01", &pid); if (NIL_P(pid)) pid = INT2NUM(0); sid = getsid(NUM2PIDT(pid)); if (sid < 0) rb_sys_fail(0); return PIDT2NUM(sid); }
Returns the (real) group ID for this process.
Process.gid #=> 500
static VALUE proc_getgid(VALUE obj) { rb_gid_t gid = getgid(); return GIDT2NUM(gid); }
Sets the group ID for this process.
static VALUE proc_setgid(VALUE obj, VALUE id) { rb_gid_t gid; check_gid_switch(); gid = OBJ2GID(id); #if defined(HAVE_SETRESGID) if (setresgid(gid, -1, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETREGID if (setregid(gid, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETRGID if (setrgid(gid) < 0) rb_sys_fail(0); #elif defined HAVE_SETGID { if (getegid() == gid) { if (setgid(gid) < 0) rb_sys_fail(0); } else { rb_notimplement(); } } #endif return GIDT2NUM(gid); }
Get an Array
of the gids of groups in the supplemental group
access list for this process.
Process.groups #=> [27, 6, 10, 11]
static VALUE proc_getgroups(VALUE obj) { VALUE ary, tmp; int i, ngroups; rb_gid_t *groups; ngroups = getgroups(0, NULL); if (ngroups == -1) rb_sys_fail(0); groups = ALLOCV_N(rb_gid_t, tmp, ngroups); ngroups = getgroups(ngroups, groups); if (ngroups == -1) rb_sys_fail(0); ary = rb_ary_new(); for (i = 0; i < ngroups; i++) rb_ary_push(ary, GIDT2NUM(groups[i])); ALLOCV_END(tmp); return ary; }
Set the supplemental group access list to the given Array
of
group IDs.
Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27] Process.groups = [27, 6, 10, 11] #=> [27, 6, 10, 11] Process.groups #=> [27, 6, 10, 11]
static VALUE proc_setgroups(VALUE obj, VALUE ary) { int ngroups, i; rb_gid_t *groups; VALUE tmp; PREPARE_GETGRNAM; Check_Type(ary, T_ARRAY); ngroups = RARRAY_LENINT(ary); if (ngroups > maxgroups()) rb_raise(rb_eArgError, "too many groups, %d max", maxgroups()); groups = ALLOCV_N(rb_gid_t, tmp, ngroups); for (i = 0; i < ngroups; i++) { VALUE g = RARRAY_PTR(ary)[i]; groups[i] = OBJ2GID1(g); } FINISH_GETGRNAM; if (setgroups(ngroups, groups) == -1) /* ngroups <= maxgroups */ rb_sys_fail(0); ALLOCV_END(tmp); return proc_getgroups(obj); }
Initializes the supplemental group access list by reading the system group
database and using all groups of which the given user is a member. The
group with the specified gid is also added to the list. Returns
the resulting Array
of the gids of all the groups in the
supplementary group access list. Not available on all platforms.
Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27] Process.initgroups( "mgranger", 30 ) #=> [30, 6, 10, 11] Process.groups #=> [30, 6, 10, 11]
static VALUE proc_initgroups(VALUE obj, VALUE uname, VALUE base_grp) { if (initgroups(StringValuePtr(uname), OBJ2GID(base_grp)) != 0) { rb_sys_fail(0); } return proc_getgroups(obj); }
Sends the given signal to the specified process id(s) if pid is
positive. If pid is zero signal is sent to all processes
whose group ID is equal to the group ID of the process. signal may
be an integer signal number or a POSIX signal name (either with or without
a SIG
prefix). If signal is negative (or starts with
a minus sign), kills process groups instead of processes. Not all signals
are available on all platforms.
pid = fork do Signal.trap("HUP") { puts "Ouch!"; exit } # ... do some work ... end # ... Process.kill("HUP", pid) Process.wait
produces:
Ouch!
If signal is an integer but wrong for signal,
Errno::EINVAL
or RangeError
will be raised.
Otherwise unless signal is a String
or a
Symbol
, and a known signal name, ArgumentError
will be raised.
Also, Errno::ESRCH
or RangeError
for invalid
pid, Errno::EPERM
when failed because of no
privilege, will be raised. In these cases, signals may have been sent to
preceding processes.
VALUE rb_f_kill(int argc, VALUE *argv) { #ifndef HAVE_KILLPG #define killpg(pg, sig) kill(-(pg), (sig)) #endif int negative = 0; int sig; int i; volatile VALUE str; const char *s; rb_secure(2); rb_check_arity(argc, 2, UNLIMITED_ARGUMENTS); switch (TYPE(argv[0])) { case T_FIXNUM: sig = FIX2INT(argv[0]); break; case T_SYMBOL: s = rb_id2name(SYM2ID(argv[0])); if (!s) rb_raise(rb_eArgError, "bad signal"); goto str_signal; case T_STRING: s = RSTRING_PTR(argv[0]); str_signal: if (s[0] == '-') { negative++; s++; } if (strncmp("SIG", s, 3) == 0) s += 3; if ((sig = signm2signo(s)) == 0) rb_raise(rb_eArgError, "unsupported name `SIG%s'", s); if (negative) sig = -sig; break; default: str = rb_check_string_type(argv[0]); if (!NIL_P(str)) { s = RSTRING_PTR(str); goto str_signal; } rb_raise(rb_eArgError, "bad signal type %s", rb_obj_classname(argv[0])); break; } if (sig < 0) { sig = -sig; for (i=1; i<argc; i++) { if (killpg(NUM2PIDT(argv[i]), sig) < 0) rb_sys_fail(0); } } else { for (i=1; i<argc; i++) { if (kill(NUM2PIDT(argv[i]), sig) < 0) rb_sys_fail(0); } } return INT2FIX(i-1); }
Returns the maximum number of gids allowed in the supplemental group access list.
Process.maxgroups #=> 32
static VALUE proc_getmaxgroups(VALUE obj) { return INT2FIX(maxgroups()); }
Sets the maximum number of gids allowed in the supplemental group access list.
static VALUE proc_setmaxgroups(VALUE obj, VALUE val) { int ngroups = FIX2INT(val); int ngroups_max = get_sc_ngroups_max(); if (ngroups <= 0) rb_raise(rb_eArgError, "maxgroups %d shold be positive", ngroups); if (ngroups > RB_MAX_GROUPS) ngroups = RB_MAX_GROUPS; if (ngroups_max > 0 && ngroups > ngroups_max) ngroups = ngroups_max; _maxgroups = ngroups; return INT2FIX(_maxgroups); }
Returns the process id of this process. Not available on all platforms.
Process.pid #=> 27415
static VALUE get_pid(void) { rb_secure(2); return PIDT2NUM(getpid()); }
Returns the process id of the parent of this process. Returns untrustworthy value on Win32/64. Not available on all platforms.
puts "I am #{Process.pid}" Process.fork { puts "Dad is #{Process.ppid}" }
produces:
I am 27417 Dad is 27417
static VALUE get_ppid(void) { rb_secure(2); return PIDT2NUM(getppid()); }
Sets the process group ID of pid (0 indicates this process) to integer. Not available on all platforms.
static VALUE proc_setpgid(VALUE obj, VALUE pid, VALUE pgrp) { rb_pid_t ipid, ipgrp; rb_secure(2); ipid = NUM2PIDT(pid); ipgrp = NUM2PIDT(pgrp); if (setpgid(ipid, ipgrp) < 0) rb_sys_fail(0); return INT2FIX(0); }
Equivalent to setpgid(0,0)
. Not available on all platforms.
static VALUE proc_setpgrp(void) { rb_secure(2); /* check for posix setpgid() first; this matches the posix */ /* getpgrp() above. It appears that configure will set SETPGRP_VOID */ /* even though setpgrp(0,0) would be preferred. The posix call avoids */ /* this confusion. */ #ifdef HAVE_SETPGID if (setpgid(0,0) < 0) rb_sys_fail(0); #elif defined(HAVE_SETPGRP) && defined(SETPGRP_VOID) if (setpgrp() < 0) rb_sys_fail(0); #endif return INT2FIX(0); }
See Process#getpriority
.
Process.setpriority(Process::PRIO_USER, 0, 19) #=> 0 Process.setpriority(Process::PRIO_PROCESS, 0, 19) #=> 0 Process.getpriority(Process::PRIO_USER, 0) #=> 19 Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19
static VALUE proc_setpriority(VALUE obj, VALUE which, VALUE who, VALUE prio) { int iwhich, iwho, iprio; rb_secure(2); iwhich = NUM2INT(which); iwho = NUM2INT(who); iprio = NUM2INT(prio); if (setpriority(iwhich, iwho, iprio) < 0) rb_sys_fail(0); return INT2FIX(0); }
Sets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.
If max_limit is not given, cur_limit is used.
resource indicates the kind of resource to limit. It should be a
symbol such as :CORE
, a string such as
"CORE"
or a constant such as
Process::RLIMIT_CORE
. The available resources are OS
dependent. Ruby may support following resources.
total available memory (bytes) (SUSv3, NetBSD, FreeBSD, OpenBSD but 4.4BSD-Lite)
core size (bytes) (SUSv3)
CPU time (seconds) (SUSv3)
data segment (bytes) (SUSv3)
file size (bytes) (SUSv3)
total size for mlock(2) (bytes) (4.4BSD, GNU/Linux)
allocation for POSIX message queues (bytes) (GNU/Linux)
ceiling on process's nice(2) value (number) (GNU/Linux)
file descriptors (number) (SUSv3)
number of processes for the user (number) (4.4BSD, GNU/Linux)
resident memory size (bytes) (4.2BSD, GNU/Linux)
ceiling on the process's real-time priority (number) (GNU/Linux)
CPU time for real-time process (us) (GNU/Linux)
all socket buffers (bytes) (NetBSD, FreeBSD)
number of queued signals allowed (signals) (GNU/Linux)
stack size (bytes) (SUSv3)
cur_limit and max_limit may be :INFINITY
,
"INFINITY"
or Process::RLIM_INFINITY
,
which means that the resource is not limited. They may be
Process::RLIM_SAVED_MAX
, Process::RLIM_SAVED_CUR
and corresponding symbols and strings too. See system setrlimit(2) manual
for details.
The following example raises the soft limit of core size to the hard limit to try to make core dump possible.
Process.setrlimit(:CORE, Process.getrlimit(:CORE)[1])
static VALUE proc_setrlimit(int argc, VALUE *argv, VALUE obj) { VALUE resource, rlim_cur, rlim_max; struct rlimit rlim; rb_secure(2); rb_scan_args(argc, argv, "21", &resource, &rlim_cur, &rlim_max); if (rlim_max == Qnil) rlim_max = rlim_cur; rlim.rlim_cur = rlimit_resource_value(rlim_cur); rlim.rlim_max = rlimit_resource_value(rlim_max); if (setrlimit(rlimit_resource_type(resource), &rlim) < 0) { rb_sys_fail("setrlimit"); } return Qnil; }
Establishes this process as a new session and process group leader, with no controlling tty. Returns the session id. Not available on all platforms.
Process.setsid #=> 27422
static VALUE proc_setsid(void) { rb_pid_t pid; rb_secure(2); pid = setsid(); if (pid < 0) rb_sys_fail(0); return PIDT2NUM(pid); }
spawn executes specified command and return its pid.
This method doesn't wait for end of the command. The parent process
should use Process.wait
to collect the termination status of
its child or use Process.detach
to register disinterest in
their status; otherwise, the operating system may accumulate zombie
processes.
spawn has bunch of options to specify process attributes:
env: hash name => val : set the environment variable name => nil : unset the environment variable command...: commandline : command line string which is passed to the standard shell cmdname, arg1, ... : command name and one or more arguments (no shell) [cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell) options: hash clearing environment variables: :unsetenv_others => true : clear environment variables except specified by env :unsetenv_others => false : don't clear (default) process group: :pgroup => true or 0 : make a new process group :pgroup => pgid : join to specified process group :pgroup => nil : don't change the process group (default) create new process group: Windows only :new_pgroup => true : the new process is the root process of a new process group :new_pgroup => false : don't create a new process group (default) resource limit: resourcename is core, cpu, data, etc. See Process.setrlimit. :rlimit_resourcename => limit :rlimit_resourcename => [cur_limit, max_limit] umask: :umask => int redirection: key: FD : single file descriptor in child process [FD, FD, ...] : multiple file descriptor in child process value: FD : redirect to the file descriptor in parent process string : redirect to file with open(string, "r" or "w") [string] : redirect to file with open(string, File::RDONLY) [string, open_mode] : redirect to file with open(string, open_mode, 0644) [string, open_mode, perm] : redirect to file with open(string, open_mode, perm) [:child, FD] : redirect to the redirected file descriptor :close : close the file descriptor in child process FD is one of follows :in : the file descriptor 0 which is the standard input :out : the file descriptor 1 which is the standard output :err : the file descriptor 2 which is the standard error integer : the file descriptor of specified the integer io : the file descriptor specified as io.fileno file descriptor inheritance: close non-redirected non-standard fds (3, 4, 5, ...) or not :close_others => true : don't inherit current directory: :chdir => str
If a hash is given as env
, the environment is updated by
env
before exec(2)
in the child process. If a
pair in env
has nil as the value, the variable is deleted.
# set FOO as BAR and unset BAZ. pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command)
If a hash is given as options
, it specifies process group,
create new process group, resource limit, current directory, umask and
redirects for the child process. Also, it can be specified to clear
environment variables.
The :unsetenv_others
key in options
specifies to
clear environment variables, other than specified by env
.
pid = spawn(command, :unsetenv_others=>true) # no environment variable pid = spawn({"FOO"=>"BAR"}, command, :unsetenv_others=>true) # FOO only
The :pgroup
key in options
specifies a process
group. The corresponding value should be true, zero or positive integer.
true and zero means the process should be a process leader of a new process
group. Other values specifies a process group to be belongs.
pid = spawn(command, :pgroup=>true) # process leader pid = spawn(command, :pgroup=>10) # belongs to the process group 10
The :new_pgroup
key in options
specifies to pass
CREATE_NEW_PROCESS_GROUP
flag to CreateProcessW()
that is Windows API. This option is only for Windows. true means the new
process is the root process of the new process group. The new process has
CTRL+C disabled. This flag is necessary for Process.kill(:SIGINT,
pid)
on the subprocess. :new_pgroup is false by default.
pid = spawn(command, :new_pgroup=>true) # new process group pid = spawn(command, :new_pgroup=>false) # same process group
The :rlimit_
foo key specifies a resource limit.
foo should be one of resource types such as core
. The
corresponding value should be an integer or an array which have one or two
integers: same as cur_limit and max_limit arguments for ::setrlimit.
cur, max = Process.getrlimit(:CORE) pid = spawn(command, :rlimit_core=>[0,max]) # disable core temporary. pid = spawn(command, :rlimit_core=>max) # enable core dump pid = spawn(command, :rlimit_core=>0) # never dump core.
The :umask
key in options
specifies the umask.
pid = spawn(command, :umask=>077)
The :in, :out, :err, a fixnum, an IO and an array key specifies a redirection. The redirection maps a file descriptor in the child process.
For example, stderr can be merged into stdout as follows:
pid = spawn(command, :err=>:out) pid = spawn(command, 2=>1) pid = spawn(command, STDERR=>:out) pid = spawn(command, STDERR=>STDOUT)
The hash keys specifies a file descriptor in the child process started by
spawn
. :err, 2 and STDERR specifies the standard error stream
(stderr).
The hash values specifies a file descriptor in the parent process which
invokes spawn
. :out, 1 and STDOUT specifies the standard
output stream (stdout).
In the above example, the standard output in the child process is not specified. So it is inherited from the parent process.
The standard input stream (stdin) can be specified by :in, 0 and STDIN.
A filename can be specified as a hash value.
pid = spawn(command, :in=>"/dev/null") # read mode pid = spawn(command, :out=>"/dev/null") # write mode pid = spawn(command, :err=>"log") # write mode pid = spawn(command, 3=>"/dev/null") # read mode
For stdout and stderr, it is opened in write mode. Otherwise read mode is used.
For specifying flags and permission of file creation explicitly, an array is used instead.
pid = spawn(command, :in=>["file"]) # read mode is assumed pid = spawn(command, :in=>["file", "r"]) pid = spawn(command, :out=>["log", "w"]) # 0644 assumed pid = spawn(command, :out=>["log", "w", 0600]) pid = spawn(command, :out=>["log", File::WRONLY|File::EXCL|File::CREAT, 0600])
The array specifies a filename, flags and permission. The flags can be a string or an integer. If the flags is omitted or nil, File::RDONLY is assumed. The permission should be an integer. If the permission is omitted or nil, 0644 is assumed.
If an array of IOs and integers are specified as a hash key, all the elements are redirected.
# stdout and stderr is redirected to log file. # The file "log" is opened just once. pid = spawn(command, [:out, :err]=>["log", "w"])
Another way to merge multiple file descriptors is [:child, fd]. [:child, fd] means the file descriptor in the child process. This is different from fd. For example, :err=>:out means redirecting child stderr to parent stdout. But :err=>[:child, :out] means redirecting child stderr to child stdout. They differ if stdout is redirected in the child process as follows.
# stdout and stderr is redirected to log file. # The file "log" is opened just once. pid = spawn(command, :out=>["log", "w"], :err=>[:child, :out])
[:child, :out] can be used to merge stderr into stdout in IO.popen. In this case, IO.popen redirects stdout to a pipe in the child process and [:child, :out] refers the redirected stdout.
io = IO.popen(["sh", "-c", "echo out; echo err >&2", :err=>[:child, :out]]) p io.read #=> "out\nerr\n"
The :chdir
key in options
specifies the current
directory.
pid = spawn(command, :chdir=>"/var/tmp")
spawn closes all non-standard unspecified descriptors by default. The “standard” descriptors are 0, 1 and 2. This behavior is specified by :close_others option. :close_others doesn't affect the standard descriptors which are closed only if :close is specified explicitly.
pid = spawn(command, :close_others=>true) # close 3,4,5,... (default) pid = spawn(command, :close_others=>false) # don't close 3,4,5,...
:close_others is true by default for spawn and IO.popen.
Note that fds which close-on-exec flag is already set are closed regardless of :close_others option.
So IO.pipe and spawn can be used as IO.popen.
# similar to r = IO.popen(command) r, w = IO.pipe pid = spawn(command, :out=>w) # r, w is closed in the child process. w.close
:close is specified as a hash value to close a fd individually.
f = open(foo) system(command, f=>:close) # don't inherit f.
If a file descriptor need to be inherited, io=>io can be used.
# valgrind has --log-fd option for log destination. # log_w=>log_w indicates log_w.fileno inherits to child process. log_r, log_w = IO.pipe pid = spawn("valgrind", "--log-fd=#{log_w.fileno}", "echo", "a", log_w=>log_w) log_w.close p log_r.read
It is also possible to exchange file descriptors.
pid = spawn(command, :out=>:err, :err=>:out)
The hash keys specify file descriptors in the child process. The hash
values specifies file descriptors in the parent process. So the above
specifies exchanging stdout and stderr. Internally, spawn
uses
an extra file descriptor to resolve such cyclic file descriptor mapping.
See Kernel.exec
for the standard shell.
static VALUE rb_f_spawn(int argc, VALUE *argv) { rb_pid_t pid; char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' }; VALUE execarg_obj, fail_str; struct rb_execarg *eargp; execarg_obj = rb_execarg_new(argc, argv, TRUE); eargp = rb_execarg_get(execarg_obj); rb_execarg_fixup(execarg_obj); fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name; pid = rb_spawn_process(eargp, errmsg, sizeof(errmsg)); RB_GC_GUARD(execarg_obj); if (pid == -1) { const char *prog = errmsg; if (!prog[0]) { rb_sys_fail_str(fail_str); } rb_sys_fail(prog); } #if defined(HAVE_FORK) || defined(HAVE_SPAWNV) return PIDT2NUM(pid); #else return Qnil; #endif }
Returns a Tms
structure (see Struct::Tms
) that
contains user and system CPU times for this process, and also for children
processes.
t = Process.times [ t.utime, t.stime, t.cutime, t.cstime ] #=> [0.0, 0.02, 0.00, 0.00]
VALUE rb_proc_times(VALUE obj) { const double hertz = #ifdef HAVE__SC_CLK_TCK (double)sysconf(_SC_CLK_TCK); #else #ifndef HZ # ifdef CLK_TCK # define HZ CLK_TCK # else # define HZ 60 # endif #endif /* HZ */ HZ; #endif struct tms buf; volatile VALUE utime, stime, cutime, sctime; times(&buf); return rb_struct_new(rb_cProcessTms, utime = DBL2NUM(buf.tms_utime / hertz), stime = DBL2NUM(buf.tms_stime / hertz), cutime = DBL2NUM(buf.tms_cutime / hertz), sctime = DBL2NUM(buf.tms_cstime / hertz)); }
Returns the (real) user ID of this process.
Process.uid #=> 501
static VALUE proc_getuid(VALUE obj) { rb_uid_t uid = getuid(); return UIDT2NUM(uid); }
Sets the (user) user ID for this process. Not available on all platforms.
static VALUE proc_setuid(VALUE obj, VALUE id) { rb_uid_t uid; check_uid_switch(); uid = OBJ2UID(id); #if defined(HAVE_SETRESUID) if (setresuid(uid, -1, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETREUID if (setreuid(uid, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETRUID if (setruid(uid) < 0) rb_sys_fail(0); #elif defined HAVE_SETUID { if (geteuid() == uid) { if (setuid(uid) < 0) rb_sys_fail(0); } else { rb_notimplement(); } } #endif return id; }
Waits for a child process to exit, returns its process id, and sets
$?
to a Process::Status
object containing
information on that process. Which child it waits on depends on the value
of pid:
Waits for the child whose process ID equals pid.
Waits for any child whose process group ID equals that of the calling process.
Waits for any child process (the default if no pid is given).
Waits for any child whose process group ID equals the absolute value of pid.
The flags argument may be a logical or of the flag values
Process::WNOHANG
(do not block if no child available) or
Process::WUNTRACED
(return stopped children that haven't
been reported). Not all flags are available on all platforms, but a flag
value of zero will work on all platforms.
Calling this method raises a SystemCallError if there are no child processes. Not available on all platforms.
include Process fork { exit 99 } #=> 27429 wait #=> 27429 $?.exitstatus #=> 99 pid = fork { sleep 3 } #=> 27440 Time.now #=> 2008-03-08 19:56:16 +0900 waitpid(pid, Process::WNOHANG) #=> nil Time.now #=> 2008-03-08 19:56:16 +0900 waitpid(pid, 0) #=> 27440 Time.now #=> 2008-03-08 19:56:19 +0900
static VALUE proc_wait(int argc, VALUE *argv) { VALUE vpid, vflags; rb_pid_t pid; int flags, status; rb_secure(2); flags = 0; if (argc == 0) { pid = -1; } else { rb_scan_args(argc, argv, "02", &vpid, &vflags); pid = NUM2PIDT(vpid); if (argc == 2 && !NIL_P(vflags)) { flags = NUM2UINT(vflags); } } if ((pid = rb_waitpid(pid, &status, flags)) < 0) rb_sys_fail(0); if (pid == 0) { rb_last_status_clear(); return Qnil; } return PIDT2NUM(pid); }
Waits for a child process to exit (see ::waitpid for exact semantics) and
returns an array containing the process id and the exit status (a
Process::Status
object) of that child. Raises a SystemCallError if there are no child
processes.
Process.fork { exit 99 } #=> 27437 pid, status = Process.wait2 pid #=> 27437 status.exitstatus #=> 99
static VALUE proc_wait2(int argc, VALUE *argv) { VALUE pid = proc_wait(argc, argv); if (NIL_P(pid)) return Qnil; return rb_assoc_new(pid, rb_last_status_get()); }
Waits for all children, returning an array of pid/status
pairs (where status is a Process::Status
object).
fork { sleep 0.2; exit 2 } #=> 27432 fork { sleep 0.1; exit 1 } #=> 27433 fork { exit 0 } #=> 27434 p Process.waitall
produces:
[[30982, #<Process::Status: pid 30982 exit 0>], [30979, #<Process::Status: pid 30979 exit 1>], [30976, #<Process::Status: pid 30976 exit 2>]]
static VALUE proc_waitall(void) { VALUE result; rb_pid_t pid; int status; rb_secure(2); result = rb_ary_new(); #ifdef NO_WAITPID if (pid_tbl) { st_foreach(pid_tbl, waitall_each, result); } #else rb_last_status_clear(); #endif for (pid = -1;;) { #ifdef NO_WAITPID pid = wait(&status); #else pid = rb_waitpid(-1, &status, 0); #endif if (pid == -1) { if (errno == ECHILD) break; #ifdef NO_WAITPID if (errno == EINTR) { rb_thread_schedule(); continue; } #endif rb_sys_fail(0); } #ifdef NO_WAITPID rb_last_status_set(status, pid); #endif rb_ary_push(result, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get())); } return result; }
Waits for a child process to exit, returns its process id, and sets
$?
to a Process::Status
object containing
information on that process. Which child it waits on depends on the value
of pid:
Waits for the child whose process ID equals pid.
Waits for any child whose process group ID equals that of the calling process.
Waits for any child process (the default if no pid is given).
Waits for any child whose process group ID equals the absolute value of pid.
The flags argument may be a logical or of the flag values
Process::WNOHANG
(do not block if no child available) or
Process::WUNTRACED
(return stopped children that haven't
been reported). Not all flags are available on all platforms, but a flag
value of zero will work on all platforms.
Calling this method raises a SystemCallError if there are no child processes. Not available on all platforms.
include Process fork { exit 99 } #=> 27429 wait #=> 27429 $?.exitstatus #=> 99 pid = fork { sleep 3 } #=> 27440 Time.now #=> 2008-03-08 19:56:16 +0900 waitpid(pid, Process::WNOHANG) #=> nil Time.now #=> 2008-03-08 19:56:16 +0900 waitpid(pid, 0) #=> 27440 Time.now #=> 2008-03-08 19:56:19 +0900
static VALUE proc_wait(int argc, VALUE *argv) { VALUE vpid, vflags; rb_pid_t pid; int flags, status; rb_secure(2); flags = 0; if (argc == 0) { pid = -1; } else { rb_scan_args(argc, argv, "02", &vpid, &vflags); pid = NUM2PIDT(vpid); if (argc == 2 && !NIL_P(vflags)) { flags = NUM2UINT(vflags); } } if ((pid = rb_waitpid(pid, &status, flags)) < 0) rb_sys_fail(0); if (pid == 0) { rb_last_status_clear(); return Qnil; } return PIDT2NUM(pid); }
Waits for a child process to exit (see ::waitpid for exact semantics) and
returns an array containing the process id and the exit status (a
Process::Status
object) of that child. Raises a SystemCallError if there are no child
processes.
Process.fork { exit 99 } #=> 27437 pid, status = Process.wait2 pid #=> 27437 status.exitstatus #=> 99
static VALUE proc_wait2(int argc, VALUE *argv) { VALUE pid = proc_wait(argc, argv); if (NIL_P(pid)) return Qnil; return rb_assoc_new(pid, rb_last_status_get()); }