Maintenance of Ruby 2.0.0 ended on February 24, 2016. Read more
Arrays are ordered, integer-indexed collections of any object.
Array indexing starts at 0, as in C or Java. A negative index is assumed to be relative to the end of the array—that is, an index of -1 indicates the last element of the array, -2 is the next to last element in the array, and so on.
A new array can be created by using the literal constructor
[]
. Arrays can contain different types of objects. For
example, the array below contains an Integer, a
String and a Float:
ary = [1, "two", 3.0] #=> [1, "two", 3.0]
An array can also be created by explicitly calling ::new with zero, one (the initial size of the Array) or two arguments (the initial size and a default object).
ary = Array.new #=> [] Array.new(3) #=> [nil, nil, nil] Array.new(3, true) #=> [true, true, true]
Note that the second argument populates the array with references to the same object. Therefore, it is only recommended in cases when you need to instantiate arrays with natively immutable objects such as Symbols, numbers, true or false.
To create an array with separate objects a block can be passed instead. This method is safe to use with mutable objects such as hashes, strings or other arrays:
Array.new(4) { Hash.new } #=> [{}, {}, {}, {}]
This is also a quick way to build up multi-dimensional arrays:
empty_table = Array.new(3) { Array.new(3) } #=> [[nil, nil, nil], [nil, nil, nil], [nil, nil, nil]]
An array can also be created by using the Array() method, provided by Kernel, which tries to call to_ary, then to_a on its argument.
Array({:a => "a", :b => "b"}) #=> [[:a, "a"], [:b, "b"]]
In addition to the methods it mixes in through the Enumerable module, the Array class has proprietary methods for accessing, searching and otherwise manipulating arrays.
Some of the more common ones are illustrated below.
Elements in an array can be retrieved using the #[] method. It can take a single integer argument (a numeric index), a pair of arguments (start and length) or a range.
arr = [1, 2, 3, 4, 5, 6] arr[2] #=> 3 arr[100] #=> nil arr[-3] #=> 4 arr[2, 3] #=> [3, 4, 5] arr[1..4] #=> [2, 3, 4, 5]
Another way to access a particular array element is by using the at method
arr.at(0) #=> 1
The slice method works in an identical manner to #[].
To raise an error for indices outside of the array bounds or else to provide a default value when that happens, you can use fetch.
arr = ['a', 'b', 'c', 'd', 'e', 'f'] arr.fetch(100) #=> IndexError: index 100 outside of array bounds: -6...6 arr.fetch(100, "oops") #=> "oops"
The special methods first and last will return the first and last elements of an array, respectively.
arr.first #=> 1 arr.last #=> 6
To return the first n
elements of an array, use take
arr.take(3) #=> [1, 2, 3]
drop does the opposite of take, by returning the elements after
n
elements have been dropped:
arr.drop(3) #=> [4, 5, 6]
Arrays keep track of their own length at all times. To query an array about the number of elements it contains, use length, count or size.
browsers = ['Chrome', 'Firefox', 'Safari', 'Opera', 'IE'] browsers.length #=> 5 browsers.count #=> 5
To check whether an array contains any elements at all
browsers.empty? #=> false
To check whether a particular item is included in the array
browsers.include?('Konqueror') #=> false
Items can be added to the end of an array by using either push or <<
arr = [1, 2, 3, 4] arr.push(5) #=> [1, 2, 3, 4, 5] arr << 6 #=> [1, 2, 3, 4, 5, 6]
unshift will add a new item to the beginning of an array.
arr.unshift(0) #=> [0, 1, 2, 3, 4, 5, 6]
With insert you can add a new element to an array at any position.
arr.insert(3, 'apple') #=> [0, 1, 2, 'apple', 3, 4, 5, 6]
Using the insert method, you can also insert multiple values at once:
arr.insert(3, 'orange', 'pear', 'grapefruit') #=> [0, 1, 2, "orange", "pear", "grapefruit", "apple", 3, 4, 5, 6]
The method pop removes the last element in an array and returns it:
arr = [1, 2, 3, 4, 5, 6] arr.pop #=> 6 arr #=> [1, 2, 3, 4, 5]
To retrieve and at the same time remove the first item, use shift:
arr.shift #=> 1 arr #=> [2, 3, 4, 5]
To delete an element at a particular index:
arr.delete_at(2) #=> 4 arr #=> [2, 3, 5]
To delete a particular element anywhere in an array, use delete:
arr = [1, 2, 2, 3] arr.delete(2) #=> [1, 3]
A useful method if you need to remove nil
values from an array
is compact:
arr = ['foo', 0, nil, 'bar', 7, 'baz', nil] arr.compact #=> ['foo', 0, 'bar', 7, 'baz'] arr #=> ['foo', 0, nil, 'bar', 7, 'baz', nil] arr.compact! #=> ['foo', 0, 'bar', 7, 'baz'] arr #=> ['foo', 0, 'bar', 7, 'baz']
Another common need is to remove duplicate elements from an array.
It has the non-destructive uniq, and destructive method uniq!
arr = [2, 5, 6, 556, 6, 6, 8, 9, 0, 123, 556] arr.uniq #=> [2, 5, 6, 556, 8, 9, 0, 123]
Like all classes that include the Enumerable module, Array has an each method, which defines what elements should be iterated over and how. In case of Array's each, all elements in the Array instance are yielded to the supplied block in sequence.
Note that this operation leaves the array unchanged.
arr = [1, 2, 3, 4, 5] arr.each { |a| print a -= 10, " " } # prints: -9 -8 -7 -6 -5 #=> [1, 2, 3, 4, 5]
Another sometimes useful iterator is reverse_each which will iterate over the elements in the array in reverse order.
words = %w[rats live on no evil star] str = "" words.reverse_each { |word| str += "#{word.reverse} " } str #=> "rats live on no evil star "
The map method can be used to create a new array based on the original array, but with the values modified by the supplied block:
arr.map { |a| 2*a } #=> [2, 4, 6, 8, 10] arr #=> [1, 2, 3, 4, 5] arr.map! { |a| a**2 } #=> [1, 4, 9, 16, 25] arr #=> [1, 4, 9, 16, 25]
Elements can be selected from an array according to criteria defined in a block. The selection can happen in a destructive or a non-destructive manner. While the destructive operations will modify the array they were called on, the non-destructive methods usually return a new array with the selected elements, but leave the original array unchanged.
arr = [1, 2, 3, 4, 5, 6] arr.select { |a| a > 3 } #=> [4, 5, 6] arr.reject { |a| a < 3 } #=> [3, 4, 5, 6] arr.drop_while { |a| a < 4 } #=> [4, 5, 6] arr #=> [1, 2, 3, 4, 5, 6]
select! and reject! are the corresponding destructive methods to select and reject
Similar to select vs. reject, delete_if and keep_if have the exact opposite result when supplied with the same block:
arr.delete_if { |a| a < 4 } #=> [4, 5, 6] arr #=> [4, 5, 6] arr = [1, 2, 3, 4, 5, 6] arr.keep_if { |a| a < 4 } #=> [1, 2, 3] arr #=> [1, 2, 3]
Returns a new array populated with the given objects.
Array.[]( 1, 'a', /^A/ ) # => [1, "a", /^A/] Array[ 1, 'a', /^A/ ] # => [1, "a", /^A/] [ 1, 'a', /^A/ ] # => [1, "a", /^A/]
static VALUE rb_ary_s_create(int argc, VALUE *argv, VALUE klass) { VALUE ary = ary_new(klass, argc); if (argc > 0 && argv) { MEMCPY(RARRAY_PTR(ary), argv, VALUE, argc); ARY_SET_LEN(ary, argc); } return ary; }
Returns a new array.
In the first form, if no arguments are sent, the new array will be empty.
When a size
and an optional obj
are sent, an
array is created with size
copies of obj
. Take
notice that all elements will reference the same object obj
.
The second form creates a copy of the array passed as a parameter (the array is generated by calling #to_ary on the parameter).
first_array = ["Matz", "Guido"] second_array = Array.new(first_array) #=> ["Matz", "Guido"] first_array.equal? second_array #=> false
In the last form, an array of the given size is created. Each element in this array is created by passing the element's index to the given block and storing the return value.
Array.new(3){ |index| index ** 2 } # => [0, 1, 4]
When sending the second parameter, the same object will be used as the value for all the array elements:
a = Array.new(2, Hash.new) # => [{}, {}] a[0]['cat'] = 'feline' a # => [{"cat"=>"feline"}, {"cat"=>"feline"}] a[1]['cat'] = 'Felix' a # => [{"cat"=>"Felix"}, {"cat"=>"Felix"}]
Since all the Array elements store the same hash, changes to one of them will affect them all.
If multiple copies are what you want, you should use the block version which uses the result of that block each time an element of the array needs to be initialized:
a = Array.new(2) { Hash.new } a[0]['cat'] = 'feline' a # => [{"cat"=>"feline"}, {}]
static VALUE rb_ary_initialize(int argc, VALUE *argv, VALUE ary) { long len; VALUE size, val; rb_ary_modify(ary); if (argc == 0) { if (ARY_OWNS_HEAP_P(ary) && RARRAY_PTR(ary)) { xfree(RARRAY_PTR(ary)); } rb_ary_unshare_safe(ary); FL_SET_EMBED(ary); ARY_SET_EMBED_LEN(ary, 0); if (rb_block_given_p()) { rb_warning("given block not used"); } return ary; } rb_scan_args(argc, argv, "02", &size, &val); if (argc == 1 && !FIXNUM_P(size)) { val = rb_check_array_type(size); if (!NIL_P(val)) { rb_ary_replace(ary, val); return ary; } } len = NUM2LONG(size); if (len < 0) { rb_raise(rb_eArgError, "negative array size"); } if (len > ARY_MAX_SIZE) { rb_raise(rb_eArgError, "array size too big"); } rb_ary_modify(ary); ary_resize_capa(ary, len); if (rb_block_given_p()) { long i; if (argc == 2) { rb_warn("block supersedes default value argument"); } for (i=0; i<len; i++) { rb_ary_store(ary, i, rb_yield(LONG2NUM(i))); ARY_SET_LEN(ary, i + 1); } } else { memfill(RARRAY_PTR(ary), len, val); ARY_SET_LEN(ary, len); } return ary; }
Tries to convert obj
into an array, using to_ary
method. Returns the converted array or nil
if
obj
cannot be converted for any reason. This method can be
used to check if an argument is an array.
Array.try_convert([1]) #=> [1] Array.try_convert("1") #=> nil if tmp = Array.try_convert(arg) # the argument is an array elsif tmp = String.try_convert(arg) # the argument is a string end
static VALUE rb_ary_s_try_convert(VALUE dummy, VALUE ary) { return rb_check_array_type(ary); }
Set Intersection — Returns a new array containing elements common to the two arrays, excluding any duplicates. The order is preserved from the original array.
It compares elements using their hash and eql? methods for efficiency.
[ 1, 1, 3, 5 ] & [ 1, 2, 3 ] #=> [ 1, 3 ] [ 'a', 'b', 'b', 'z' ] & [ 'a', 'b', 'c' ] #=> [ 'a', 'b' ]
See also #uniq.
static VALUE rb_ary_and(VALUE ary1, VALUE ary2) { VALUE hash, ary3, v; st_data_t vv; long i; ary2 = to_ary(ary2); ary3 = rb_ary_new2(RARRAY_LEN(ary1) < RARRAY_LEN(ary2) ? RARRAY_LEN(ary1) : RARRAY_LEN(ary2)); hash = ary_make_hash(ary2); if (RHASH_EMPTY_P(hash)) return ary3; for (i=0; i<RARRAY_LEN(ary1); i++) { vv = (st_data_t)(v = rb_ary_elt(ary1, i)); if (st_delete(RHASH_TBL(hash), &vv, 0)) { rb_ary_push(ary3, v); } } ary_recycle_hash(hash); return ary3; }
Repetition — With a String argument, equivalent
to ary.join(str)
.
Otherwise, returns a new array built by concatenating the int
copies of self
.
[ 1, 2, 3 ] * 3 #=> [ 1, 2, 3, 1, 2, 3, 1, 2, 3 ] [ 1, 2, 3 ] * "," #=> "1,2,3"
static VALUE rb_ary_times(VALUE ary, VALUE times) { VALUE ary2, tmp, *ptr, *ptr2; long t, len; tmp = rb_check_string_type(times); if (!NIL_P(tmp)) { return rb_ary_join(ary, tmp); } len = NUM2LONG(times); if (len == 0) { ary2 = ary_new(rb_obj_class(ary), 0); goto out; } if (len < 0) { rb_raise(rb_eArgError, "negative argument"); } if (ARY_MAX_SIZE/len < RARRAY_LEN(ary)) { rb_raise(rb_eArgError, "argument too big"); } len *= RARRAY_LEN(ary); ary2 = ary_new(rb_obj_class(ary), len); ARY_SET_LEN(ary2, len); ptr = RARRAY_PTR(ary); ptr2 = RARRAY_PTR(ary2); t = RARRAY_LEN(ary); if (0 < t) { MEMCPY(ptr2, ptr, VALUE, t); while (t <= len/2) { MEMCPY(ptr2+t, ptr2, VALUE, t); t *= 2; } if (t < len) { MEMCPY(ptr2+t, ptr2, VALUE, len-t); } } out: OBJ_INFECT(ary2, ary); return ary2; }
Concatenation — Returns a new array built by concatenating the two arrays together to produce a third array.
[ 1, 2, 3 ] + [ 4, 5 ] #=> [ 1, 2, 3, 4, 5 ] a = [ "a", "b", "c" ] a + [ "d", "e", "f" ] a #=> [ "a", "b", "c", "d", "e", "f" ]
See also #concat.
VALUE rb_ary_plus(VALUE x, VALUE y) { VALUE z; long len; y = to_ary(y); len = RARRAY_LEN(x) + RARRAY_LEN(y); z = rb_ary_new2(len); MEMCPY(RARRAY_PTR(z), RARRAY_PTR(x), VALUE, RARRAY_LEN(x)); MEMCPY(RARRAY_PTR(z) + RARRAY_LEN(x), RARRAY_PTR(y), VALUE, RARRAY_LEN(y)); ARY_SET_LEN(z, len); return z; }
Array Difference
Returns a new array that is a copy of the original array, removing any
items that also appear in other_ary
. The order is preserved
from the original array.
It compares elements using their hash and eql? methods for efficiency.
[ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ] #=> [ 3, 3, 5 ]
If you need set-like behavior, see the library class Set.
static VALUE rb_ary_diff(VALUE ary1, VALUE ary2) { VALUE ary3; VALUE hash; long i; hash = ary_make_hash(to_ary(ary2)); ary3 = rb_ary_new(); for (i=0; i<RARRAY_LEN(ary1); i++) { if (st_lookup(RHASH_TBL(hash), RARRAY_PTR(ary1)[i], 0)) continue; rb_ary_push(ary3, rb_ary_elt(ary1, i)); } ary_recycle_hash(hash); return ary3; }
Append—Pushes the given object on to the end of this array. This expression returns the array itself, so several appends may be chained together.
[ 1, 2 ] << "c" << "d" << [ 3, 4 ] #=> [ 1, 2, "c", "d", [ 3, 4 ] ]
VALUE rb_ary_push(VALUE ary, VALUE item) { long idx = RARRAY_LEN(ary); ary_ensure_room_for_push(ary, 1); RARRAY_PTR(ary)[idx] = item; ARY_SET_LEN(ary, idx + 1); return ary; }
Comparison — Returns an integer (-1
, 0
, or
+1
) if this array is less than, equal to, or greater than
other_ary
.
nil
is returned if the two values are incomparable.
Each object in each array is compared (using the <=> operator).
Arrays are compared in an “element-wise” manner; the first two elements that are not equal will determine the return value for the whole comparison.
If all the values are equal, then the return is based on a comparison of the array lengths. Thus, two arrays are “equal” according to Array#<=> if, and only if, they have the same length and the value of each element is equal to the value of the corresponding element in the other array.
[ "a", "a", "c" ] <=> [ "a", "b", "c" ] #=> -1 [ 1, 2, 3, 4, 5, 6 ] <=> [ 1, 2 ] #=> +1
VALUE rb_ary_cmp(VALUE ary1, VALUE ary2) { long len; VALUE v; ary2 = rb_check_array_type(ary2); if (NIL_P(ary2)) return Qnil; if (ary1 == ary2) return INT2FIX(0); v = rb_exec_recursive_paired(recursive_cmp, ary1, ary2, ary2); if (v != Qundef) return v; len = RARRAY_LEN(ary1) - RARRAY_LEN(ary2); if (len == 0) return INT2FIX(0); if (len > 0) return INT2FIX(1); return INT2FIX(-1); }
Equality — Two arrays are equal if they contain the same number of elements
and if each element is equal to (according to Object#==) the corresponding
element in other_ary
.
[ "a", "c" ] == [ "a", "c", 7 ] #=> false [ "a", "c", 7 ] == [ "a", "c", 7 ] #=> true [ "a", "c", 7 ] == [ "a", "d", "f" ] #=> false
static VALUE rb_ary_equal(VALUE ary1, VALUE ary2) { if (ary1 == ary2) return Qtrue; if (!RB_TYPE_P(ary2, T_ARRAY)) { if (!rb_respond_to(ary2, rb_intern("to_ary"))) { return Qfalse; } return rb_equal(ary2, ary1); } if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse; return rb_exec_recursive_paired(recursive_equal, ary1, ary2, ary2); }
Element Reference — Returns the element at index
, or returns a
subarray starting at the start
index and continuing for
length
elements, or returns a subarray specified by
range
of indices.
Negative indices count backward from the end of the array (-1 is the last
element). For start
and range
cases the starting
index is just before an element. Additionally, an empty array is returned
when the starting index for an element range is at the end of the array.
Returns nil
if the index (or starting index) are out of range.
a = [ "a", "b", "c", "d", "e" ] a[2] + a[0] + a[1] #=> "cab" a[6] #=> nil a[1, 2] #=> [ "b", "c" ] a[1..3] #=> [ "b", "c", "d" ] a[4..7] #=> [ "e" ] a[6..10] #=> nil a[-3, 3] #=> [ "c", "d", "e" ] # special cases a[5] #=> nil a[6, 1] #=> nil a[5, 1] #=> [] a[5..10] #=> []
VALUE rb_ary_aref(int argc, VALUE *argv, VALUE ary) { VALUE arg; long beg, len; if (argc == 2) { beg = NUM2LONG(argv[0]); len = NUM2LONG(argv[1]); if (beg < 0) { beg += RARRAY_LEN(ary); } return rb_ary_subseq(ary, beg, len); } if (argc != 1) { rb_scan_args(argc, argv, "11", NULL, NULL); } arg = argv[0]; /* special case - speeding up */ if (FIXNUM_P(arg)) { return rb_ary_entry(ary, FIX2LONG(arg)); } /* check if idx is Range */ switch (rb_range_beg_len(arg, &beg, &len, RARRAY_LEN(ary), 0)) { case Qfalse: break; case Qnil: return Qnil; default: return rb_ary_subseq(ary, beg, len); } return rb_ary_entry(ary, NUM2LONG(arg)); }
Element Assignment — Sets the element at index
, or replaces a
subarray from the start
index for length
elements, or replaces a subarray specified by the range
of
indices.
If indices are greater than the current capacity of the array, the array
grows automatically. Elements are inserted into the array at
start
if length
is zero.
Negative indices will count backward from the end of the array. For
start
and range
cases the starting index is just
before an element.
An IndexError is raised if a negative index points past the beginning of the array.
a = Array.new a[4] = "4"; #=> [nil, nil, nil, nil, "4"] a[0, 3] = [ 'a', 'b', 'c' ] #=> ["a", "b", "c", nil, "4"] a[1..2] = [ 1, 2 ] #=> ["a", 1, 2, nil, "4"] a[0, 2] = "?" #=> ["?", 2, nil, "4"] a[0..2] = "A" #=> ["A", "4"] a[-1] = "Z" #=> ["A", "Z"] a[1..-1] = nil #=> ["A", nil] a[1..-1] = [] #=> ["A"] a[0, 0] = [ 1, 2 ] #=> [1, 2, "A"] a[3, 0] = "B" #=> [1, 2, "A", "B"]
static VALUE rb_ary_aset(int argc, VALUE *argv, VALUE ary) { long offset, beg, len; if (argc == 3) { rb_ary_modify_check(ary); beg = NUM2LONG(argv[0]); len = NUM2LONG(argv[1]); rb_ary_splice(ary, beg, len, argv[2]); return argv[2]; } rb_check_arity(argc, 2, 2); rb_ary_modify_check(ary); if (FIXNUM_P(argv[0])) { offset = FIX2LONG(argv[0]); goto fixnum; } if (rb_range_beg_len(argv[0], &beg, &len, RARRAY_LEN(ary), 1)) { /* check if idx is Range */ rb_ary_splice(ary, beg, len, argv[1]); return argv[1]; } offset = NUM2LONG(argv[0]); fixnum: rb_ary_store(ary, offset, argv[1]); return argv[1]; }
Searches through an array whose elements are also arrays comparing
obj
with the first element of each contained array using
obj.==
.
Returns the first contained array that matches (that is, the first
associated array), or nil
if no match is found.
See also #rassoc
s1 = [ "colors", "red", "blue", "green" ] s2 = [ "letters", "a", "b", "c" ] s3 = "foo" a = [ s1, s2, s3 ] a.assoc("letters") #=> [ "letters", "a", "b", "c" ] a.assoc("foo") #=> nil
VALUE rb_ary_assoc(VALUE ary, VALUE key) { long i; VALUE v; for (i = 0; i < RARRAY_LEN(ary); ++i) { v = rb_check_array_type(RARRAY_PTR(ary)[i]); if (!NIL_P(v) && RARRAY_LEN(v) > 0 && rb_equal(RARRAY_PTR(v)[0], key)) return v; } return Qnil; }
Returns the element at index
. A negative index counts from the
end of self
. Returns nil
if the index is out of
range. See also #[].
a = [ "a", "b", "c", "d", "e" ] a.at(0) #=> "a" a.at(-1) #=> "e"
static VALUE rb_ary_at(VALUE ary, VALUE pos) { return rb_ary_entry(ary, NUM2LONG(pos)); }
By using binary search, finds a value from this array which meets the given condition in O(log n) where n is the size of the array.
You can use this method in two use cases: a find-minimum mode and a find-any mode. In either case, the elements of the array must be monotone (or sorted) with respect to the block.
In find-minimum mode (this is a good choice for typical use case), the block must return true or false, and there must be an index i (0 <= i <= ary.size) so that:
the block returns false for any element whose index is less than i, and
the block returns true for any element whose index is greater than or equal to i.
This method returns the i-th element. If i is equal to ary.size, it returns nil.
ary = [0, 4, 7, 10, 12] ary.bsearch {|x| x >= 4 } #=> 4 ary.bsearch {|x| x >= 6 } #=> 7 ary.bsearch {|x| x >= -1 } #=> 0 ary.bsearch {|x| x >= 100 } #=> nil
In find-any mode (this behaves like libc's bsearch(3)), the block must return a number, and there must be two indices i and j (0 <= i <= j <= ary.size) so that:
the block returns a positive number for ary if 0 <= k < i,
the block returns zero for ary if i <= k < j, and
the block returns a negative number for ary if j <= k < ary.size.
Under this condition, this method returns any element whose index is within i…j. If i is equal to j (i.e., there is no element that satisfies the block), this method returns nil.
ary = [0, 4, 7, 10, 12] # try to find v such that 4 <= v < 8 ary.bsearch {|x| 1 - x / 4 } #=> 4 or 7 # try to find v such that 8 <= v < 10 ary.bsearch {|x| 4 - x / 2 } #=> nil
You must not mix the two modes at a time; the block must always return either true/false, or always return a number. It is undefined which value is actually picked up at each iteration.
static VALUE rb_ary_bsearch(VALUE ary) { long low = 0, high = RARRAY_LEN(ary), mid; int smaller = 0, satisfied = 0; VALUE v, val; RETURN_ENUMERATOR(ary, 0, 0); while (low < high) { mid = low + ((high - low) / 2); val = rb_ary_entry(ary, mid); v = rb_yield(val); if (FIXNUM_P(v)) { if (FIX2INT(v) == 0) return val; smaller = FIX2INT(v) < 0; } else if (v == Qtrue) { satisfied = 1; smaller = 1; } else if (v == Qfalse || v == Qnil) { smaller = 0; } else if (rb_obj_is_kind_of(v, rb_cNumeric)) { switch (rb_cmpint(rb_funcall(v, id_cmp, 1, INT2FIX(0)), v, INT2FIX(0))) { case 0: return val; case 1: smaller = 1; break; case -1: smaller = 0; } } else { rb_raise(rb_eTypeError, "wrong argument type %s" " (must be numeric, true, false or nil)", rb_obj_classname(v)); } if (smaller) { high = mid; } else { low = mid + 1; } } if (low == RARRAY_LEN(ary)) return Qnil; if (!satisfied) return Qnil; return rb_ary_entry(ary, low); }
Removes all elements from self
.
a = [ "a", "b", "c", "d", "e" ] a.clear #=> [ ]
VALUE rb_ary_clear(VALUE ary) { rb_ary_modify_check(ary); ARY_SET_LEN(ary, 0); if (ARY_SHARED_P(ary)) { if (!ARY_EMBED_P(ary)) { rb_ary_unshare(ary); FL_SET_EMBED(ary); } } else if (ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) { ary_resize_capa(ary, ARY_DEFAULT_SIZE * 2); } return ary; }
Invokes the given block once for each element of self
.
Creates a new array containing the values returned by the block.
See also Enumerable#collect.
If no block is given, an Enumerator is returned instead.
a = [ "a", "b", "c", "d" ] a.map { |x| x + "!" } #=> ["a!", "b!", "c!", "d!"] a #=> ["a", "b", "c", "d"]
static VALUE rb_ary_collect(VALUE ary) { long i; VALUE collect; RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length); collect = rb_ary_new2(RARRAY_LEN(ary)); for (i = 0; i < RARRAY_LEN(ary); i++) { rb_ary_push(collect, rb_yield(RARRAY_PTR(ary)[i])); } return collect; }
Invokes the given block once for each element of self
,
replacing the element with the value returned by the block.
See also Enumerable#collect.
If no block is given, an Enumerator is returned instead.
a = [ "a", "b", "c", "d" ] a.map! {|x| x + "!" } a #=> [ "a!", "b!", "c!", "d!" ]
static VALUE rb_ary_collect_bang(VALUE ary) { long i; RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length); rb_ary_modify(ary); for (i = 0; i < RARRAY_LEN(ary); i++) { rb_ary_store(ary, i, rb_yield(RARRAY_PTR(ary)[i])); } return ary; }
When invoked with a block, yields all combinations of length n
of elements from the array and then returns the array itself.
The implementation makes no guarantees about the order in which the combinations are yielded.
If no block is given, an Enumerator is returned instead.
Examples:
a = [1, 2, 3, 4] a.combination(1).to_a #=> [[1],[2],[3],[4]] a.combination(2).to_a #=> [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]] a.combination(3).to_a #=> [[1,2,3],[1,2,4],[1,3,4],[2,3,4]] a.combination(4).to_a #=> [[1,2,3,4]] a.combination(0).to_a #=> [[]] # one combination of length 0 a.combination(5).to_a #=> [] # no combinations of length 5
static VALUE rb_ary_combination(VALUE ary, VALUE num) { long n, i, len; n = NUM2LONG(num); RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_combination_size); len = RARRAY_LEN(ary); if (n < 0 || len < n) { /* yield nothing */ } else if (n == 0) { rb_yield(rb_ary_new2(0)); } else if (n == 1) { for (i = 0; i < len; i++) { rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i])); } } else { VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */ volatile VALUE t0; long *stack = ALLOCV_N(long, t0, n+1); long lev = 0; RBASIC(ary0)->klass = 0; MEMZERO(stack+1, long, n); stack[0] = -1; for (;;) { for (lev++; lev < n; lev++) { stack[lev+1] = stack[lev]+1; } if (!yield_indexed_values(ary0, n, stack+1)) { rb_raise(rb_eRuntimeError, "combination reentered"); } do { if (lev == 0) goto done; stack[lev--]++; } while (stack[lev+1]+n == len+lev+1); } done: ALLOCV_END(t0); RBASIC(ary0)->klass = rb_cArray; } return ary; }
Returns a copy of self
with all nil
elements
removed.
[ "a", nil, "b", nil, "c", nil ].compact #=> [ "a", "b", "c" ]
static VALUE rb_ary_compact(VALUE ary) { ary = rb_ary_dup(ary); rb_ary_compact_bang(ary); return ary; }
Removes nil
elements from the array.
Returns nil
if no changes were made, otherwise returns the
array.
[ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ] [ "a", "b", "c" ].compact! #=> nil
static VALUE rb_ary_compact_bang(VALUE ary) { VALUE *p, *t, *end; long n; rb_ary_modify(ary); p = t = RARRAY_PTR(ary); end = p + RARRAY_LEN(ary); while (t < end) { if (NIL_P(*t)) t++; else *p++ = *t++; } n = p - RARRAY_PTR(ary); if (RARRAY_LEN(ary) == n) { return Qnil; } ARY_SET_LEN(ary, n); if (n * 2 < ARY_CAPA(ary) && ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) { ary_resize_capa(ary, n * 2); } return ary; }
Appends the elements of other_ary
to self
.
[ "a", "b" ].concat( ["c", "d"] ) #=> [ "a", "b", "c", "d" ] a = [ 1, 2, 3 ] a.concat( [ 4, 5 ] ) a #=> [ 1, 2, 3, 4, 5 ]
See also Array#+.
VALUE rb_ary_concat(VALUE x, VALUE y) { rb_ary_modify_check(x); y = to_ary(y); if (RARRAY_LEN(y) > 0) { rb_ary_splice(x, RARRAY_LEN(x), 0, y); } return x; }
Returns the number of elements.
If an argument is given, counts the number of elements which equal
obj
using ===
.
If a block is given, counts the number of elements for which the block returns a true value.
ary = [1, 2, 4, 2] ary.count #=> 4 ary.count(2) #=> 2 ary.count { |x| x%2 == 0 } #=> 3
static VALUE rb_ary_count(int argc, VALUE *argv, VALUE ary) { long i, n = 0; if (argc == 0) { VALUE v; if (!rb_block_given_p()) return LONG2NUM(RARRAY_LEN(ary)); for (i = 0; i < RARRAY_LEN(ary); i++) { v = RARRAY_PTR(ary)[i]; if (RTEST(rb_yield(v))) n++; } } else { VALUE obj; rb_scan_args(argc, argv, "1", &obj); if (rb_block_given_p()) { rb_warn("given block not used"); } for (i = 0; i < RARRAY_LEN(ary); i++) { if (rb_equal(RARRAY_PTR(ary)[i], obj)) n++; } } return LONG2NUM(n); }
Calls the given block for each element n
times or forever if
nil
is given.
Does nothing if a non-positive number is given or the array is empty.
Returns nil
if the loop has finished without getting
interrupted.
If no block is given, an Enumerator is returned instead.
a = ["a", "b", "c"] a.cycle { |x| puts x } # print, a, b, c, a, b, c,.. forever. a.cycle(2) { |x| puts x } # print, a, b, c, a, b, c.
static VALUE rb_ary_cycle(int argc, VALUE *argv, VALUE ary) { long n, i; VALUE nv = Qnil; rb_scan_args(argc, argv, "01", &nv); RETURN_SIZED_ENUMERATOR(ary, argc, argv, rb_ary_cycle_size); if (NIL_P(nv)) { n = -1; } else { n = NUM2LONG(nv); if (n <= 0) return Qnil; } while (RARRAY_LEN(ary) > 0 && (n < 0 || 0 < n--)) { for (i=0; i<RARRAY_LEN(ary); i++) { rb_yield(RARRAY_PTR(ary)[i]); } } return Qnil; }
Deletes all items from self
that are equal to
obj
.
Returns the last deleted item, or nil
if no matching item is
found.
If the optional code block is given, the result of the block is returned if
the item is not found. (To remove nil
elements and get an
informative return value, use #compact!)
a = [ "a", "b", "b", "b", "c" ] a.delete("b") #=> "b" a #=> ["a", "c"] a.delete("z") #=> nil a.delete("z") { "not found" } #=> "not found"
VALUE rb_ary_delete(VALUE ary, VALUE item) { VALUE v = item; long i1, i2; for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) { VALUE e = RARRAY_PTR(ary)[i1]; if (rb_equal(e, item)) { v = e; continue; } if (i1 != i2) { rb_ary_store(ary, i2, e); } i2++; } if (RARRAY_LEN(ary) == i2) { if (rb_block_given_p()) { return rb_yield(item); } return Qnil; } ary_resize_smaller(ary, i2); return v; }
Deletes the element at the specified index
, returning that
element, or nil
if the index
is out of range.
See also #slice!
a = ["ant", "bat", "cat", "dog"] a.delete_at(2) #=> "cat" a #=> ["ant", "bat", "dog"] a.delete_at(99) #=> nil
static VALUE rb_ary_delete_at_m(VALUE ary, VALUE pos) { return rb_ary_delete_at(ary, NUM2LONG(pos)); }
Deletes every element of self
for which block evaluates to
true
.
The array is changed instantly every time the block is called, not after the iteration is over.
See also #reject!
If no block is given, an Enumerator is returned instead.
a = [ "a", "b", "c" ] a.delete_if {|x| x >= "b" } #=> ["a"]
static VALUE rb_ary_delete_if(VALUE ary) { RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length); ary_reject_bang(ary); return ary; }
Drops first n
elements from ary
and returns the
rest of the elements in an array.
If a negative number is given, raises an ArgumentError.
See also #take
a = [1, 2, 3, 4, 5, 0] a.drop(3) #=> [4, 5, 0]
static VALUE rb_ary_drop(VALUE ary, VALUE n) { VALUE result; long pos = NUM2LONG(n); if (pos < 0) { rb_raise(rb_eArgError, "attempt to drop negative size"); } result = rb_ary_subseq(ary, pos, RARRAY_LEN(ary)); if (result == Qnil) result = rb_ary_new(); return result; }
Drops elements up to, but not including, the first element for which the
block returns nil
or false
and returns an array
containing the remaining elements.
If no block is given, an Enumerator is returned instead.
See also #take_while
a = [1, 2, 3, 4, 5, 0] a.drop_while {|i| i < 3 } #=> [3, 4, 5, 0]
static VALUE rb_ary_drop_while(VALUE ary) { long i; RETURN_ENUMERATOR(ary, 0, 0); for (i = 0; i < RARRAY_LEN(ary); i++) { if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break; } return rb_ary_drop(ary, LONG2FIX(i)); }
Calls the given block once for each element in self
, passing
that element as a parameter.
An Enumerator is returned if no block is given.
a = [ "a", "b", "c" ] a.each {|x| print x, " -- " }
produces:
a -- b -- c --
VALUE rb_ary_each(VALUE array) { long i; volatile VALUE ary = array; RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length); for (i=0; i<RARRAY_LEN(ary); i++) { rb_yield(RARRAY_PTR(ary)[i]); } return ary; }
Same as #each, but passes the
index
of the element instead of the element itself.
An Enumerator is returned if no block is given.
a = [ "a", "b", "c" ] a.each_index {|x| print x, " -- " }
produces:
0 -- 1 -- 2 --
static VALUE rb_ary_each_index(VALUE ary) { long i; RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length); for (i=0; i<RARRAY_LEN(ary); i++) { rb_yield(LONG2NUM(i)); } return ary; }
Returns true
if self
contains no elements.
[].empty? #=> true
static VALUE rb_ary_empty_p(VALUE ary) { if (RARRAY_LEN(ary) == 0) return Qtrue; return Qfalse; }
Returns true
if self
and other
are
the same object, or are both arrays with the same content (according to Object#eql?).
static VALUE rb_ary_eql(VALUE ary1, VALUE ary2) { if (ary1 == ary2) return Qtrue; if (!RB_TYPE_P(ary2, T_ARRAY)) return Qfalse; if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse; return rb_exec_recursive_paired(recursive_eql, ary1, ary2, ary2); }
Tries to return the element at position index
, but throws an
IndexError exception if the referenced
index
lies outside of the array bounds. This error can be
prevented by supplying a second argument, which will act as a
default
value.
Alternatively, if a block is given it will only be executed when an invalid
index
is referenced. Negative values of index
count from the end of the array.
a = [ 11, 22, 33, 44 ] a.fetch(1) #=> 22 a.fetch(-1) #=> 44 a.fetch(4, 'cat') #=> "cat" a.fetch(100) { |i| puts "#{i} is out of bounds" } #=> "100 is out of bounds"
static VALUE rb_ary_fetch(int argc, VALUE *argv, VALUE ary) { VALUE pos, ifnone; long block_given; long idx; rb_scan_args(argc, argv, "11", &pos, &ifnone); block_given = rb_block_given_p(); if (block_given && argc == 2) { rb_warn("block supersedes default value argument"); } idx = NUM2LONG(pos); if (idx < 0) { idx += RARRAY_LEN(ary); } if (idx < 0 || RARRAY_LEN(ary) <= idx) { if (block_given) return rb_yield(pos); if (argc == 1) { rb_raise(rb_eIndexError, "index %ld outside of array bounds: %ld...%ld", idx - (idx < 0 ? RARRAY_LEN(ary) : 0), -RARRAY_LEN(ary), RARRAY_LEN(ary)); } return ifnone; } return RARRAY_PTR(ary)[idx]; }
The first three forms set the selected elements of self
(which
may be the entire array) to obj
.
A start
of nil
is equivalent to zero.
A length
of nil
is equivalent to the length of
the array.
The last three forms fill the array with the value of the given block, which is passed the absolute index of each element to be filled.
Negative values of start
count from the end of the array,
where -1
is the last element.
a = [ "a", "b", "c", "d" ] a.fill("x") #=> ["x", "x", "x", "x"] a.fill("z", 2, 2) #=> ["x", "x", "z", "z"] a.fill("y", 0..1) #=> ["y", "y", "z", "z"] a.fill { |i| i*i } #=> [0, 1, 4, 9] a.fill(-2) { |i| i*i*i } #=> [0, 1, 8, 27]
static VALUE rb_ary_fill(int argc, VALUE *argv, VALUE ary) { VALUE item, arg1, arg2; long beg = 0, end = 0, len = 0; VALUE *p, *pend; int block_p = FALSE; if (rb_block_given_p()) { block_p = TRUE; rb_scan_args(argc, argv, "02", &arg1, &arg2); argc += 1; /* hackish */ } else { rb_scan_args(argc, argv, "12", &item, &arg1, &arg2); } switch (argc) { case 1: beg = 0; len = RARRAY_LEN(ary); break; case 2: if (rb_range_beg_len(arg1, &beg, &len, RARRAY_LEN(ary), 1)) { break; } /* fall through */ case 3: beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1); if (beg < 0) { beg = RARRAY_LEN(ary) + beg; if (beg < 0) beg = 0; } len = NIL_P(arg2) ? RARRAY_LEN(ary) - beg : NUM2LONG(arg2); break; } rb_ary_modify(ary); if (len < 0) { return ary; } if (beg >= ARY_MAX_SIZE || len > ARY_MAX_SIZE - beg) { rb_raise(rb_eArgError, "argument too big"); } end = beg + len; if (RARRAY_LEN(ary) < end) { if (end >= ARY_CAPA(ary)) { ary_resize_capa(ary, end); } rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), end - RARRAY_LEN(ary)); ARY_SET_LEN(ary, end); } if (block_p) { VALUE v; long i; for (i=beg; i<end; i++) { v = rb_yield(LONG2NUM(i)); if (i>=RARRAY_LEN(ary)) break; RARRAY_PTR(ary)[i] = v; } } else { p = RARRAY_PTR(ary) + beg; pend = p + len; while (p < pend) { *p++ = item; } } return ary; }
Returns the index of the first object in ary
such
that the object is ==
to obj
.
If a block is given instead of an argument, returns the index of
the first object for which the block returns true
. Returns
nil
if no match is found.
See also #rindex.
An Enumerator is returned if neither a block nor argument is given.
a = [ "a", "b", "c" ] a.index("b") #=> 1 a.index("z") #=> nil a.index { |x| x == "b" } #=> 1
This is an alias of #find_index.
static VALUE rb_ary_index(int argc, VALUE *argv, VALUE ary) { VALUE val; long i; if (argc == 0) { RETURN_ENUMERATOR(ary, 0, 0); for (i=0; i<RARRAY_LEN(ary); i++) { if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) { return LONG2NUM(i); } } return Qnil; } rb_scan_args(argc, argv, "1", &val); if (rb_block_given_p()) rb_warn("given block not used"); for (i=0; i<RARRAY_LEN(ary); i++) { if (rb_equal(RARRAY_PTR(ary)[i], val)) return LONG2NUM(i); } return Qnil; }
Returns the first element, or the first n
elements, of the
array. If the array is empty, the first form returns nil
, and
the second form returns an empty array. See also #last for the opposite effect.
a = [ "q", "r", "s", "t" ] a.first #=> "q" a.first(2) #=> ["q", "r"]
static VALUE rb_ary_first(int argc, VALUE *argv, VALUE ary) { if (argc == 0) { if (RARRAY_LEN(ary) == 0) return Qnil; return RARRAY_PTR(ary)[0]; } else { return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST); } }
Returns a new array that is a one-dimensional flattening of
self
(recursively).
That is, for every element that is an array, extract its elements into the new array.
The optional level
argument determines the level of recursion
to flatten.
s = [ 1, 2, 3 ] #=> [1, 2, 3] t = [ 4, 5, 6, [7, 8] ] #=> [4, 5, 6, [7, 8]] a = [ s, t, 9, 10 ] #=> [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10] a.flatten #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a = [ 1, 2, [3, [4, 5] ] ] a.flatten(1) #=> [1, 2, 3, [4, 5]]
static VALUE rb_ary_flatten(int argc, VALUE *argv, VALUE ary) { int mod = 0, level = -1; VALUE result, lv; rb_scan_args(argc, argv, "01", &lv); if (!NIL_P(lv)) level = NUM2INT(lv); if (level == 0) return ary_make_shared_copy(ary); result = flatten(ary, level, &mod); OBJ_INFECT(result, ary); return result; }
Flattens self
in place.
Returns nil
if no modifications were made (i.e., the array
contains no subarrays.)
The optional level
argument determines the level of recursion
to flatten.
a = [ 1, 2, [3, [4, 5] ] ] a.flatten! #=> [1, 2, 3, 4, 5] a.flatten! #=> nil a #=> [1, 2, 3, 4, 5] a = [ 1, 2, [3, [4, 5] ] ] a.flatten!(1) #=> [1, 2, 3, [4, 5]]
static VALUE rb_ary_flatten_bang(int argc, VALUE *argv, VALUE ary) { int mod = 0, level = -1; VALUE result, lv; rb_scan_args(argc, argv, "01", &lv); rb_ary_modify_check(ary); if (!NIL_P(lv)) level = NUM2INT(lv); if (level == 0) return Qnil; result = flatten(ary, level, &mod); if (mod == 0) { ary_discard(result); return Qnil; } if (!(mod = ARY_EMBED_P(result))) rb_obj_freeze(result); rb_ary_replace(ary, result); if (mod) ARY_SET_EMBED_LEN(result, 0); return ary; }
Return true
if this array is frozen (or temporarily frozen
while being sorted). See also Object#frozen?
static VALUE rb_ary_frozen_p(VALUE ary) { if (OBJ_FROZEN(ary)) return Qtrue; return Qfalse; }
Compute a hash-code for this array.
Two arrays with the same content will have the same hash code (and will compare using eql?).
static VALUE rb_ary_hash(VALUE ary) { return rb_exec_recursive_outer(recursive_hash, ary, 0); }
Returns true
if the given object
is present in
self
(that is, if any element ==
object
), otherwise returns false
.
a = [ "a", "b", "c" ] a.include?("b") #=> true a.include?("z") #=> false
VALUE rb_ary_includes(VALUE ary, VALUE item) { long i; for (i=0; i<RARRAY_LEN(ary); i++) { if (rb_equal(RARRAY_PTR(ary)[i], item)) { return Qtrue; } } return Qfalse; }
Returns the index of the first object in ary
such
that the object is ==
to obj
.
If a block is given instead of an argument, returns the index of
the first object for which the block returns true
. Returns
nil
if no match is found.
See also #rindex.
An Enumerator is returned if neither a block nor argument is given.
a = [ "a", "b", "c" ] a.index("b") #=> 1 a.index("z") #=> nil a.index { |x| x == "b" } #=> 1
This is an alias of #find_index.
static VALUE rb_ary_index(int argc, VALUE *argv, VALUE ary) { VALUE val; long i; if (argc == 0) { RETURN_ENUMERATOR(ary, 0, 0); for (i=0; i<RARRAY_LEN(ary); i++) { if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) { return LONG2NUM(i); } } return Qnil; } rb_scan_args(argc, argv, "1", &val); if (rb_block_given_p()) rb_warn("given block not used"); for (i=0; i<RARRAY_LEN(ary); i++) { if (rb_equal(RARRAY_PTR(ary)[i], val)) return LONG2NUM(i); } return Qnil; }
Replaces the contents of self
with the contents of
other_ary
, truncating or expanding if necessary.
a = [ "a", "b", "c", "d", "e" ] a.replace([ "x", "y", "z" ]) #=> ["x", "y", "z"] a #=> ["x", "y", "z"]
VALUE rb_ary_replace(VALUE copy, VALUE orig) { rb_ary_modify_check(copy); orig = to_ary(orig); if (copy == orig) return copy; if (RARRAY_LEN(orig) <= RARRAY_EMBED_LEN_MAX) { VALUE *ptr; VALUE shared = 0; if (ARY_OWNS_HEAP_P(copy)) { xfree(RARRAY_PTR(copy)); } else if (ARY_SHARED_P(copy)) { shared = ARY_SHARED(copy); FL_UNSET_SHARED(copy); } FL_SET_EMBED(copy); ptr = RARRAY_PTR(orig); MEMCPY(RARRAY_PTR(copy), ptr, VALUE, RARRAY_LEN(orig)); if (shared) { rb_ary_decrement_share(shared); } ARY_SET_LEN(copy, RARRAY_LEN(orig)); } else { VALUE shared = ary_make_shared(orig); if (ARY_OWNS_HEAP_P(copy)) { xfree(RARRAY_PTR(copy)); } else { rb_ary_unshare_safe(copy); } FL_UNSET_EMBED(copy); ARY_SET_PTR(copy, RARRAY_PTR(orig)); ARY_SET_LEN(copy, RARRAY_LEN(orig)); rb_ary_set_shared(copy, shared); } return copy; }
Inserts the given values before the element with the given
index
.
Negative indices count backwards from the end of the array, where
-1
is the last element.
a = %w{ a b c d } a.insert(2, 99) #=> ["a", "b", 99, "c", "d"] a.insert(-2, 1, 2, 3) #=> ["a", "b", 99, "c", 1, 2, 3, "d"]
static VALUE rb_ary_insert(int argc, VALUE *argv, VALUE ary) { long pos; rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); rb_ary_modify_check(ary); if (argc == 1) return ary; pos = NUM2LONG(argv[0]); if (pos == -1) { pos = RARRAY_LEN(ary); } if (pos < 0) { pos++; } rb_ary_splice(ary, pos, 0, rb_ary_new4(argc - 1, argv + 1)); return ary; }
Creates a string representation of self
.
[ "a", "b", "c" ].to_s #=> "[\"a\", \"b\", \"c\"]"
static VALUE rb_ary_inspect(VALUE ary) { if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new2("[]"); return rb_exec_recursive(inspect_ary, ary, 0); }
Returns a string created by converting each element of the array to a
string, separated by the given separator
. If the
separator
is nil
, it uses current $,. If both the
separator
and $, are nil, it uses empty string.
[ "a", "b", "c" ].join #=> "abc" [ "a", "b", "c" ].join("-") #=> "a-b-c"
static VALUE rb_ary_join_m(int argc, VALUE *argv, VALUE ary) { VALUE sep; rb_scan_args(argc, argv, "01", &sep); if (NIL_P(sep)) sep = rb_output_fs; return rb_ary_join(ary, sep); }
Deletes every element of self
for which the given block
evaluates to false
.
See also #select!
If no block is given, an Enumerator is returned instead.
a = %w{ a b c d e f } a.keep_if { |v| v =~ /[aeiou]/ } #=> ["a", "e"]
static VALUE rb_ary_keep_if(VALUE ary) { RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length); rb_ary_select_bang(ary); return ary; }
Returns the last element(s) of self
. If the array is empty,
the first form returns nil
.
See also #first for the opposite effect.
a = [ "w", "x", "y", "z" ] a.last #=> "z" a.last(2) #=> ["y", "z"]
VALUE rb_ary_last(int argc, VALUE *argv, VALUE ary) { if (argc == 0) { if (RARRAY_LEN(ary) == 0) return Qnil; return RARRAY_PTR(ary)[RARRAY_LEN(ary)-1]; } else { return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST); } }
Returns the number of elements in self
. May be zero.
[ 1, 2, 3, 4, 5 ].length #=> 5 [].length #=> 0
static VALUE rb_ary_length(VALUE ary) { long len = RARRAY_LEN(ary); return LONG2NUM(len); }
Invokes the given block once for each element of self
.
Creates a new array containing the values returned by the block.
See also Enumerable#collect.
If no block is given, an Enumerator is returned instead.
a = [ "a", "b", "c", "d" ] a.map { |x| x + "!" } #=> ["a!", "b!", "c!", "d!"] a #=> ["a", "b", "c", "d"]
static VALUE rb_ary_collect(VALUE ary) { long i; VALUE collect; RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length); collect = rb_ary_new2(RARRAY_LEN(ary)); for (i = 0; i < RARRAY_LEN(ary); i++) { rb_ary_push(collect, rb_yield(RARRAY_PTR(ary)[i])); } return collect; }
Invokes the given block once for each element of self
,
replacing the element with the value returned by the block.
See also Enumerable#collect.
If no block is given, an Enumerator is returned instead.
a = [ "a", "b", "c", "d" ] a.map! {|x| x + "!" } a #=> [ "a!", "b!", "c!", "d!" ]
static VALUE rb_ary_collect_bang(VALUE ary) { long i; RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length); rb_ary_modify(ary); for (i = 0; i < RARRAY_LEN(ary); i++) { rb_ary_store(ary, i, rb_yield(RARRAY_PTR(ary)[i])); } return ary; }
Packs the contents of arr into a binary sequence according to the
directives in aTemplateString (see the table below) Directives
“A,'' “a,'' and “Z'' may be followed by a count,
which gives the width of the resulting field. The remaining directives also
may take a count, indicating the number of array elements to convert. If
the count is an asterisk (“*
''), all remaining array
elements will be converted. Any of the directives
“sSiIlL
'' may be followed by an underscore
(“_
'') or exclamation mark (“!
'')
to use the underlying platform's native size for the specified type;
otherwise, they use a platform-independent size. Spaces are ignored in the
template string. See also String#unpack
.
a = [ "a", "b", "c" ] n = [ 65, 66, 67 ] a.pack("A3A3A3") #=> "a b c " a.pack("a3a3a3") #=> "a\000\000b\000\000c\000\000" n.pack("ccc") #=> "ABC"
Directives for pack
.
Integer | Array | Directive | Element | Meaning --------------------------------------------------------------------------- C | Integer | 8-bit unsigned (unsigned char) S | Integer | 16-bit unsigned, native endian (uint16_t) L | Integer | 32-bit unsigned, native endian (uint32_t) Q | Integer | 64-bit unsigned, native endian (uint64_t) | | c | Integer | 8-bit signed (signed char) s | Integer | 16-bit signed, native endian (int16_t) l | Integer | 32-bit signed, native endian (int32_t) q | Integer | 64-bit signed, native endian (int64_t) | | S_, S! | Integer | unsigned short, native endian I, I_, I! | Integer | unsigned int, native endian L_, L! | Integer | unsigned long, native endian | | s_, s! | Integer | signed short, native endian i, i_, i! | Integer | signed int, native endian l_, l! | Integer | signed long, native endian | | S> L> Q> | Integer | same as the directives without ">" except s> l> q> | | big endian S!> I!> | | (available since Ruby 1.9.3) L!> | | "S>" is same as "n" s!> i!> | | "L>" is same as "N" l!> | | | | S< L< Q< | Integer | same as the directives without "<" except s< l< q< | | little endian S!< I!< | | (available since Ruby 1.9.3) L!< | | "S<" is same as "v" s!< i!< | | "L<" is same as "V" l!< | | | | n | Integer | 16-bit unsigned, network (big-endian) byte order N | Integer | 32-bit unsigned, network (big-endian) byte order v | Integer | 16-bit unsigned, VAX (little-endian) byte order V | Integer | 32-bit unsigned, VAX (little-endian) byte order | | U | Integer | UTF-8 character w | Integer | BER-compressed integer Float | | Directive | | Meaning --------------------------------------------------------------------------- D, d | Float | double-precision, native format F, f | Float | single-precision, native format E | Float | double-precision, little-endian byte order e | Float | single-precision, little-endian byte order G | Float | double-precision, network (big-endian) byte order g | Float | single-precision, network (big-endian) byte order String | | Directive | | Meaning --------------------------------------------------------------------------- A | String | arbitrary binary string (space padded, count is width) a | String | arbitrary binary string (null padded, count is width) Z | String | same as ``a'', except that null is added with * B | String | bit string (MSB first) b | String | bit string (LSB first) H | String | hex string (high nibble first) h | String | hex string (low nibble first) u | String | UU-encoded string M | String | quoted printable, MIME encoding (see RFC2045) m | String | base64 encoded string (see RFC 2045, count is width) | | (if count is 0, no line feed are added, see RFC 4648) P | String | pointer to a structure (fixed-length string) p | String | pointer to a null-terminated string Misc. | | Directive | | Meaning --------------------------------------------------------------------------- @ | --- | moves to absolute position X | --- | back up a byte x | --- | null byte
static VALUE pack_pack(VALUE ary, VALUE fmt) { static const char nul10[] = "\0\0\0\0\0\0\0\0\0\0"; static const char spc10[] = " "; const char *p, *pend; VALUE res, from, associates = 0; char type; long items, len, idx, plen; const char *ptr; int enc_info = 1; /* 0 - BINARY, 1 - US-ASCII, 2 - UTF-8 */ #ifdef NATINT_PACK int natint; /* native integer */ #endif int integer_size, bigendian_p; StringValue(fmt); p = RSTRING_PTR(fmt); pend = p + RSTRING_LEN(fmt); res = rb_str_buf_new(0); items = RARRAY_LEN(ary); idx = 0; #define TOO_FEW (rb_raise(rb_eArgError, toofew), 0) #define THISFROM (items > 0 ? RARRAY_PTR(ary)[idx] : TOO_FEW) #define NEXTFROM (items-- > 0 ? RARRAY_PTR(ary)[idx++] : TOO_FEW) while (p < pend) { int explicit_endian = 0; if (RSTRING_PTR(fmt) + RSTRING_LEN(fmt) != pend) { rb_raise(rb_eRuntimeError, "format string modified"); } type = *p++; /* get data type */ #ifdef NATINT_PACK natint = 0; #endif if (ISSPACE(type)) continue; if (type == '#') { while ((p < pend) && (*p != '\n')) { p++; } continue; } { static const char natstr[] = "sSiIlL"; static const char endstr[] = "sSiIlLqQ"; modifiers: switch (*p) { case '_': case '!': if (strchr(natstr, type)) { #ifdef NATINT_PACK natint = 1; #endif p++; } else { rb_raise(rb_eArgError, "'%c' allowed only after types %s", *p, natstr); } goto modifiers; case '<': case '>': if (!strchr(endstr, type)) { rb_raise(rb_eArgError, "'%c' allowed only after types %s", *p, endstr); } if (explicit_endian) { rb_raise(rb_eRangeError, "Can't use both '<' and '>'"); } explicit_endian = *p++; goto modifiers; } } if (*p == '*') { /* set data length */ len = strchr("@Xxu", type) ? 0 : strchr("PMm", type) ? 1 : items; p++; } else if (ISDIGIT(*p)) { errno = 0; len = STRTOUL(p, (char**)&p, 10); if (errno) { rb_raise(rb_eRangeError, "pack length too big"); } } else { len = 1; } switch (type) { case 'U': /* if encoding is US-ASCII, upgrade to UTF-8 */ if (enc_info == 1) enc_info = 2; break; case 'm': case 'M': case 'u': /* keep US-ASCII (do nothing) */ break; default: /* fall back to BINARY */ enc_info = 0; break; } switch (type) { case 'A': case 'a': case 'Z': case 'B': case 'b': case 'H': case 'h': from = NEXTFROM; if (NIL_P(from)) { ptr = ""; plen = 0; } else { StringValue(from); ptr = RSTRING_PTR(from); plen = RSTRING_LEN(from); OBJ_INFECT(res, from); } if (p[-1] == '*') len = plen; switch (type) { case 'a': /* arbitrary binary string (null padded) */ case 'A': /* arbitrary binary string (ASCII space padded) */ case 'Z': /* null terminated string */ if (plen >= len) { rb_str_buf_cat(res, ptr, len); if (p[-1] == '*' && type == 'Z') rb_str_buf_cat(res, nul10, 1); } else { rb_str_buf_cat(res, ptr, plen); len -= plen; while (len >= 10) { rb_str_buf_cat(res, (type == 'A')?spc10:nul10, 10); len -= 10; } rb_str_buf_cat(res, (type == 'A')?spc10:nul10, len); } break; #define castchar(from) (char)((from) & 0xff) case 'b': /* bit string (ascending) */ { int byte = 0; long i, j = 0; if (len > plen) { j = (len - plen + 1)/2; len = plen; } for (i=0; i++ < len; ptr++) { if (*ptr & 1) byte |= 128; if (i & 7) byte >>= 1; else { char c = castchar(byte); rb_str_buf_cat(res, &c, 1); byte = 0; } } if (len & 7) { char c; byte >>= 7 - (len & 7); c = castchar(byte); rb_str_buf_cat(res, &c, 1); } len = j; goto grow; } break; case 'B': /* bit string (descending) */ { int byte = 0; long i, j = 0; if (len > plen) { j = (len - plen + 1)/2; len = plen; } for (i=0; i++ < len; ptr++) { byte |= *ptr & 1; if (i & 7) byte <<= 1; else { char c = castchar(byte); rb_str_buf_cat(res, &c, 1); byte = 0; } } if (len & 7) { char c; byte <<= 7 - (len & 7); c = castchar(byte); rb_str_buf_cat(res, &c, 1); } len = j; goto grow; } break; case 'h': /* hex string (low nibble first) */ { int byte = 0; long i, j = 0; if (len > plen) { j = (len + 1) / 2 - (plen + 1) / 2; len = plen; } for (i=0; i++ < len; ptr++) { if (ISALPHA(*ptr)) byte |= (((*ptr & 15) + 9) & 15) << 4; else byte |= (*ptr & 15) << 4; if (i & 1) byte >>= 4; else { char c = castchar(byte); rb_str_buf_cat(res, &c, 1); byte = 0; } } if (len & 1) { char c = castchar(byte); rb_str_buf_cat(res, &c, 1); } len = j; goto grow; } break; case 'H': /* hex string (high nibble first) */ { int byte = 0; long i, j = 0; if (len > plen) { j = (len + 1) / 2 - (plen + 1) / 2; len = plen; } for (i=0; i++ < len; ptr++) { if (ISALPHA(*ptr)) byte |= ((*ptr & 15) + 9) & 15; else byte |= *ptr & 15; if (i & 1) byte <<= 4; else { char c = castchar(byte); rb_str_buf_cat(res, &c, 1); byte = 0; } } if (len & 1) { char c = castchar(byte); rb_str_buf_cat(res, &c, 1); } len = j; goto grow; } break; } break; case 'c': /* signed char */ case 'C': /* unsigned char */ while (len-- > 0) { char c; from = NEXTFROM; c = (char)num2i32(from); rb_str_buf_cat(res, &c, sizeof(char)); } break; case 's': /* signed short */ integer_size = NATINT_LEN(short, 2); bigendian_p = BIGENDIAN_P(); goto pack_integer; case 'S': /* unsigned short */ integer_size = NATINT_LEN(short, 2); bigendian_p = BIGENDIAN_P(); goto pack_integer; case 'i': /* signed int */ integer_size = (int)sizeof(int); bigendian_p = BIGENDIAN_P(); goto pack_integer; case 'I': /* unsigned int */ integer_size = (int)sizeof(int); bigendian_p = BIGENDIAN_P(); goto pack_integer; case 'l': /* signed long */ integer_size = NATINT_LEN(long, 4); bigendian_p = BIGENDIAN_P(); goto pack_integer; case 'L': /* unsigned long */ integer_size = NATINT_LEN(long, 4); bigendian_p = BIGENDIAN_P(); goto pack_integer; case 'q': /* signed quad (64bit) int */ integer_size = 8; bigendian_p = BIGENDIAN_P(); goto pack_integer; case 'Q': /* unsigned quad (64bit) int */ integer_size = 8; bigendian_p = BIGENDIAN_P(); goto pack_integer; case 'n': /* unsigned short (network byte-order) */ integer_size = 2; bigendian_p = 1; goto pack_integer; case 'N': /* unsigned long (network byte-order) */ integer_size = 4; bigendian_p = 1; goto pack_integer; case 'v': /* unsigned short (VAX byte-order) */ integer_size = 2; bigendian_p = 0; goto pack_integer; case 'V': /* unsigned long (VAX byte-order) */ integer_size = 4; bigendian_p = 0; goto pack_integer; pack_integer: if (explicit_endian) { bigendian_p = explicit_endian == '>'; } switch (integer_size) { #if defined(HAVE_INT16_T) && !defined(FORCE_BIG_PACK) case SIZEOF_INT16_T: while (len-- > 0) { union { int16_t i; char a[sizeof(int16_t)]; } v; from = NEXTFROM; v.i = (int16_t)num2i32(from); if (bigendian_p != BIGENDIAN_P()) v.i = swap16(v.i); rb_str_buf_cat(res, v.a, sizeof(int16_t)); } break; #endif #if defined(HAVE_INT32_T) && !defined(FORCE_BIG_PACK) case SIZEOF_INT32_T: while (len-- > 0) { union { int32_t i; char a[sizeof(int32_t)]; } v; from = NEXTFROM; v.i = (int32_t)num2i32(from); if (bigendian_p != BIGENDIAN_P()) v.i = swap32(v.i); rb_str_buf_cat(res, v.a, sizeof(int32_t)); } break; #endif #if defined(HAVE_INT64_T) && SIZEOF_LONG == SIZEOF_INT64_T && !defined(FORCE_BIG_PACK) case SIZEOF_INT64_T: while (len-- > 0) { union { int64_t i; char a[sizeof(int64_t)]; } v; from = NEXTFROM; v.i = num2i32(from); /* can return 64bit value if SIZEOF_LONG == SIZEOF_INT64_T */ if (bigendian_p != BIGENDIAN_P()) v.i = swap64(v.i); rb_str_buf_cat(res, v.a, sizeof(int64_t)); } break; #endif default: if (integer_size > MAX_INTEGER_PACK_SIZE) rb_bug("unexpected intger size for pack: %d", integer_size); while (len-- > 0) { union { unsigned long i[(MAX_INTEGER_PACK_SIZE+SIZEOF_LONG-1)/SIZEOF_LONG]; char a[(MAX_INTEGER_PACK_SIZE+SIZEOF_LONG-1)/SIZEOF_LONG*SIZEOF_LONG]; } v; int num_longs = (integer_size+SIZEOF_LONG-1)/SIZEOF_LONG; int i; from = NEXTFROM; rb_big_pack(from, v.i, num_longs); if (bigendian_p) { for (i = 0; i < num_longs/2; i++) { unsigned long t = v.i[i]; v.i[i] = v.i[num_longs-1-i]; v.i[num_longs-1-i] = t; } } if (bigendian_p != BIGENDIAN_P()) { for (i = 0; i < num_longs; i++) v.i[i] = swapl(v.i[i]); } rb_str_buf_cat(res, bigendian_p ? v.a + sizeof(long)*num_longs - integer_size : v.a, integer_size); } break; } break; case 'f': /* single precision float in native format */ case 'F': /* ditto */ while (len-- > 0) { float f; from = NEXTFROM; f = (float)RFLOAT_VALUE(rb_to_float(from)); rb_str_buf_cat(res, (char*)&f, sizeof(float)); } break; case 'e': /* single precision float in VAX byte-order */ while (len-- > 0) { float f; FLOAT_CONVWITH(ftmp); from = NEXTFROM; f = (float)RFLOAT_VALUE(rb_to_float(from)); f = HTOVF(f,ftmp); rb_str_buf_cat(res, (char*)&f, sizeof(float)); } break; case 'E': /* double precision float in VAX byte-order */ while (len-- > 0) { double d; DOUBLE_CONVWITH(dtmp); from = NEXTFROM; d = RFLOAT_VALUE(rb_to_float(from)); d = HTOVD(d,dtmp); rb_str_buf_cat(res, (char*)&d, sizeof(double)); } break; case 'd': /* double precision float in native format */ case 'D': /* ditto */ while (len-- > 0) { double d; from = NEXTFROM; d = RFLOAT_VALUE(rb_to_float(from)); rb_str_buf_cat(res, (char*)&d, sizeof(double)); } break; case 'g': /* single precision float in network byte-order */ while (len-- > 0) { float f; FLOAT_CONVWITH(ftmp); from = NEXTFROM; f = (float)RFLOAT_VALUE(rb_to_float(from)); f = HTONF(f,ftmp); rb_str_buf_cat(res, (char*)&f, sizeof(float)); } break; case 'G': /* double precision float in network byte-order */ while (len-- > 0) { double d; DOUBLE_CONVWITH(dtmp); from = NEXTFROM; d = RFLOAT_VALUE(rb_to_float(from)); d = HTOND(d,dtmp); rb_str_buf_cat(res, (char*)&d, sizeof(double)); } break; case 'x': /* null byte */ grow: while (len >= 10) { rb_str_buf_cat(res, nul10, 10); len -= 10; } rb_str_buf_cat(res, nul10, len); break; case 'X': /* back up byte */ shrink: plen = RSTRING_LEN(res); if (plen < len) rb_raise(rb_eArgError, "X outside of string"); rb_str_set_len(res, plen - len); break; case '@': /* null fill to absolute position */ len -= RSTRING_LEN(res); if (len > 0) goto grow; len = -len; if (len > 0) goto shrink; break; case '%': rb_raise(rb_eArgError, "%% is not supported"); break; case 'U': /* Unicode character */ while (len-- > 0) { SIGNED_VALUE l; char buf[8]; int le; from = NEXTFROM; from = rb_to_int(from); l = NUM2LONG(from); if (l < 0) { rb_raise(rb_eRangeError, "pack(U): value out of range"); } le = rb_uv_to_utf8(buf, l); rb_str_buf_cat(res, (char*)buf, le); } break; case 'u': /* uuencoded string */ case 'm': /* base64 encoded string */ from = NEXTFROM; StringValue(from); ptr = RSTRING_PTR(from); plen = RSTRING_LEN(from); if (len == 0 && type == 'm') { encodes(res, ptr, plen, type, 0); ptr += plen; break; } if (len <= 2) len = 45; else if (len > 63 && type == 'u') len = 63; else len = len / 3 * 3; while (plen > 0) { long todo; if (plen > len) todo = len; else todo = plen; encodes(res, ptr, todo, type, 1); plen -= todo; ptr += todo; } break; case 'M': /* quoted-printable encoded string */ from = rb_obj_as_string(NEXTFROM); if (len <= 1) len = 72; qpencode(res, from, len); break; case 'P': /* pointer to packed byte string */ from = THISFROM; if (!NIL_P(from)) { StringValue(from); if (RSTRING_LEN(from) < len) { rb_raise(rb_eArgError, "too short buffer for P(%ld for %ld)", RSTRING_LEN(from), len); } } len = 1; /* FALL THROUGH */ case 'p': /* pointer to string */ while (len-- > 0) { char *t; from = NEXTFROM; if (NIL_P(from)) { t = 0; } else { t = StringValuePtr(from); } if (!associates) { associates = rb_ary_new(); } rb_ary_push(associates, from); rb_obj_taint(from); rb_str_buf_cat(res, (char*)&t, sizeof(char*)); } break; case 'w': /* BER compressed integer */ while (len-- > 0) { unsigned long ul; VALUE buf = rb_str_new(0, 0); char c, *bufs, *bufe; from = NEXTFROM; if (RB_TYPE_P(from, T_BIGNUM)) { VALUE big128 = rb_uint2big(128); while (RB_TYPE_P(from, T_BIGNUM)) { from = rb_big_divmod(from, big128); c = castchar(NUM2INT(RARRAY_PTR(from)[1]) | 0x80); /* mod */ rb_str_buf_cat(buf, &c, sizeof(char)); from = RARRAY_PTR(from)[0]; /* div */ } } { long l = NUM2LONG(from); if (l < 0) { rb_raise(rb_eArgError, "can't compress negative numbers"); } ul = l; } while (ul) { c = castchar((ul & 0x7f) | 0x80); rb_str_buf_cat(buf, &c, sizeof(char)); ul >>= 7; } if (RSTRING_LEN(buf)) { bufs = RSTRING_PTR(buf); bufe = bufs + RSTRING_LEN(buf) - 1; *bufs &= 0x7f; /* clear continue bit */ while (bufs < bufe) { /* reverse */ c = *bufs; *bufs++ = *bufe; *bufe-- = c; } rb_str_buf_cat(res, RSTRING_PTR(buf), RSTRING_LEN(buf)); } else { c = 0; rb_str_buf_cat(res, &c, sizeof(char)); } } break; default: rb_warning("unknown pack directive '%c' in '%s'", type, RSTRING_PTR(fmt)); break; } } if (associates) { str_associate(res, associates); } OBJ_INFECT(res, fmt); switch (enc_info) { case 1: ENCODING_CODERANGE_SET(res, rb_usascii_encindex(), ENC_CODERANGE_7BIT); break; case 2: rb_enc_set_index(res, rb_utf8_encindex()); break; default: /* do nothing, keep ASCII-8BIT */ break; } return res; }
When invoked with a block, yield all permutations of length n
of the elements of the array, then return the array itself.
If n
is not specified, yield all permutations of all elements.
The implementation makes no guarantees about the order in which the permutations are yielded.
If no block is given, an Enumerator is returned instead.
Examples:
a = [1, 2, 3] a.permutation.to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] a.permutation(1).to_a #=> [[1],[2],[3]] a.permutation(2).to_a #=> [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]] a.permutation(3).to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] a.permutation(0).to_a #=> [[]] # one permutation of length 0 a.permutation(4).to_a #=> [] # no permutations of length 4
static VALUE rb_ary_permutation(int argc, VALUE *argv, VALUE ary) { VALUE num; long r, n, i; n = RARRAY_LEN(ary); /* Array length */ RETURN_SIZED_ENUMERATOR(ary, argc, argv, rb_ary_permutation_size); /* Return enumerator if no block */ rb_scan_args(argc, argv, "01", &num); r = NIL_P(num) ? n : NUM2LONG(num); /* Permutation size from argument */ if (r < 0 || n < r) { /* no permutations: yield nothing */ } else if (r == 0) { /* exactly one permutation: the zero-length array */ rb_yield(rb_ary_new2(0)); } else if (r == 1) { /* this is a special, easy case */ for (i = 0; i < RARRAY_LEN(ary); i++) { rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i])); } } else { /* this is the general case */ volatile VALUE t0 = tmpbuf(r,sizeof(long)); long *p = (long*)RSTRING_PTR(t0); volatile VALUE t1 = tmpbuf(n,sizeof(char)); char *used = (char*)RSTRING_PTR(t1); VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */ RBASIC(ary0)->klass = 0; MEMZERO(used, char, n); /* initialize array */ permute0(n, r, p, 0, used, ary0); /* compute and yield permutations */ tmpbuf_discard(t0); tmpbuf_discard(t1); RBASIC(ary0)->klass = rb_cArray; } return ary; }
Removes the last element from self
and returns it, or
nil
if the array is empty.
If a number n
is given, returns an array of the last
n
elements (or less) just like array.slice!(-n,
n)
does. See also #push for
the opposite effect.
a = [ "a", "b", "c", "d" ] a.pop #=> "d" a.pop(2) #=> ["b", "c"] a #=> ["a"]
static VALUE rb_ary_pop_m(int argc, VALUE *argv, VALUE ary) { VALUE result; if (argc == 0) { return rb_ary_pop(ary); } rb_ary_modify_check(ary); result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST); ARY_INCREASE_LEN(ary, -RARRAY_LEN(result)); return result; }
Returns an array of all combinations of elements from all arrays.
The length of the returned array is the product of the length of
self
and the argument arrays.
If given a block, product will
yield all combinations and return self
instead.
[1,2,3].product([4,5]) #=> [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]] [1,2].product([1,2]) #=> [[1,1],[1,2],[2,1],[2,2]] [1,2].product([3,4],[5,6]) #=> [[1,3,5],[1,3,6],[1,4,5],[1,4,6], # [2,3,5],[2,3,6],[2,4,5],[2,4,6]] [1,2].product() #=> [[1],[2]] [1,2].product([]) #=> []
static VALUE rb_ary_product(int argc, VALUE *argv, VALUE ary) { int n = argc+1; /* How many arrays we're operating on */ volatile VALUE t0 = tmpary(n); volatile VALUE t1 = tmpbuf(n, sizeof(int)); VALUE *arrays = RARRAY_PTR(t0); /* The arrays we're computing the product of */ int *counters = (int*)RSTRING_PTR(t1); /* The current position in each one */ VALUE result = Qnil; /* The array we'll be returning, when no block given */ long i,j; long resultlen = 1; RBASIC(t0)->klass = 0; RBASIC(t1)->klass = 0; /* initialize the arrays of arrays */ ARY_SET_LEN(t0, n); arrays[0] = ary; for (i = 1; i < n; i++) arrays[i] = Qnil; for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]); /* initialize the counters for the arrays */ for (i = 0; i < n; i++) counters[i] = 0; /* Otherwise, allocate and fill in an array of results */ if (rb_block_given_p()) { /* Make defensive copies of arrays; exit if any is empty */ for (i = 0; i < n; i++) { if (RARRAY_LEN(arrays[i]) == 0) goto done; arrays[i] = ary_make_shared_copy(arrays[i]); } } else { /* Compute the length of the result array; return [] if any is empty */ for (i = 0; i < n; i++) { long k = RARRAY_LEN(arrays[i]); if (k == 0) { result = rb_ary_new2(0); goto done; } if (MUL_OVERFLOW_LONG_P(resultlen, k)) rb_raise(rb_eRangeError, "too big to product"); resultlen *= k; } result = rb_ary_new2(resultlen); } for (;;) { int m; /* fill in one subarray */ VALUE subarray = rb_ary_new2(n); for (j = 0; j < n; j++) { rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j])); } /* put it on the result array */ if (NIL_P(result)) { FL_SET(t0, FL_USER5); rb_yield(subarray); if (! FL_TEST(t0, FL_USER5)) { rb_raise(rb_eRuntimeError, "product reentered"); } else { FL_UNSET(t0, FL_USER5); } } else { rb_ary_push(result, subarray); } /* * Increment the last counter. If it overflows, reset to 0 * and increment the one before it. */ m = n-1; counters[m]++; while (counters[m] == RARRAY_LEN(arrays[m])) { counters[m] = 0; /* If the first counter overflows, we are done */ if (--m < 0) goto done; counters[m]++; } } done: tmpary_discard(t0); tmpbuf_discard(t1); return NIL_P(result) ? ary : result; }
Append — Pushes the given object(s) on to the end of this array. This expression returns the array itself, so several appends may be chained together. See also #pop for the opposite effect.
a = [ "a", "b", "c" ] a.push("d", "e", "f") #=> ["a", "b", "c", "d", "e", "f"] [1, 2, 3,].push(4).push(5) #=> [1, 2, 3, 4, 5]
static VALUE rb_ary_push_m(int argc, VALUE *argv, VALUE ary) { return rb_ary_cat(ary, argv, argc); }
Searches through the array whose elements are also arrays.
Compares obj
with the second element of each contained array
using obj.==
.
Returns the first contained array that matches obj
.
See also #assoc.
a = [ [ 1, "one"], [2, "two"], [3, "three"], ["ii", "two"] ] a.rassoc("two") #=> [2, "two"] a.rassoc("four") #=> nil
VALUE rb_ary_rassoc(VALUE ary, VALUE value) { long i; VALUE v; for (i = 0; i < RARRAY_LEN(ary); ++i) { v = RARRAY_PTR(ary)[i]; if (RB_TYPE_P(v, T_ARRAY) && RARRAY_LEN(v) > 1 && rb_equal(RARRAY_PTR(v)[1], value)) return v; } return Qnil; }
Returns a new array containing the items in self
for which the
given block is not true
.
See also #delete_if
If no block is given, an Enumerator is returned instead.
static VALUE rb_ary_reject(VALUE ary) { VALUE rejected_ary; RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length); rejected_ary = rb_ary_new(); ary_reject(ary, rejected_ary); return rejected_ary; }
Equivalent to #delete_if,
deleting elements from self
for which the block evaluates to
true
, but returns nil
if no changes were made.
The array is changed instantly every time the block is called, not after the iteration is over.
See also Enumerable#reject and #delete_if.
If no block is given, an Enumerator is returned instead.
static VALUE rb_ary_reject_bang(VALUE ary) { RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length); return ary_reject_bang(ary); }
When invoked with a block, yields all repeated combinations of length
n
of elements from the array and then returns the array
itself.
The implementation makes no guarantees about the order in which the repeated combinations are yielded.
If no block is given, an Enumerator is returned instead.
Examples:
a = [1, 2, 3] a.repeated_combination(1).to_a #=> [[1], [2], [3]] a.repeated_combination(2).to_a #=> [[1,1],[1,2],[1,3],[2,2],[2,3],[3,3]] a.repeated_combination(3).to_a #=> [[1,1,1],[1,1,2],[1,1,3],[1,2,2],[1,2,3], # [1,3,3],[2,2,2],[2,2,3],[2,3,3],[3,3,3]] a.repeated_combination(4).to_a #=> [[1,1,1,1],[1,1,1,2],[1,1,1,3],[1,1,2,2],[1,1,2,3], # [1,1,3,3],[1,2,2,2],[1,2,2,3],[1,2,3,3],[1,3,3,3], # [2,2,2,2],[2,2,2,3],[2,2,3,3],[2,3,3,3],[3,3,3,3]] a.repeated_combination(0).to_a #=> [[]] # one combination of length 0
static VALUE rb_ary_repeated_combination(VALUE ary, VALUE num) { long n, i, len; n = NUM2LONG(num); /* Combination size from argument */ RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_repeated_combination_size); /* Return enumerator if no block */ len = RARRAY_LEN(ary); if (n < 0) { /* yield nothing */ } else if (n == 0) { rb_yield(rb_ary_new2(0)); } else if (n == 1) { for (i = 0; i < len; i++) { rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i])); } } else if (len == 0) { /* yield nothing */ } else { volatile VALUE t0 = tmpbuf(n, sizeof(long)); long *p = (long*)RSTRING_PTR(t0); VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */ RBASIC(ary0)->klass = 0; rcombinate0(len, n, p, 0, n, ary0); /* compute and yield repeated combinations */ tmpbuf_discard(t0); RBASIC(ary0)->klass = rb_cArray; } return ary; }
When invoked with a block, yield all repeated permutations of length
n
of the elements of the array, then return the array itself.
The implementation makes no guarantees about the order in which the repeated permutations are yielded.
If no block is given, an Enumerator is returned instead.
Examples:
a = [1, 2] a.repeated_permutation(1).to_a #=> [[1], [2]] a.repeated_permutation(2).to_a #=> [[1,1],[1,2],[2,1],[2,2]] a.repeated_permutation(3).to_a #=> [[1,1,1],[1,1,2],[1,2,1],[1,2,2], # [2,1,1],[2,1,2],[2,2,1],[2,2,2]] a.repeated_permutation(0).to_a #=> [[]] # one permutation of length 0
static VALUE rb_ary_repeated_permutation(VALUE ary, VALUE num) { long r, n, i; n = RARRAY_LEN(ary); /* Array length */ RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_repeated_permutation_size); /* Return Enumerator if no block */ r = NUM2LONG(num); /* Permutation size from argument */ if (r < 0) { /* no permutations: yield nothing */ } else if (r == 0) { /* exactly one permutation: the zero-length array */ rb_yield(rb_ary_new2(0)); } else if (r == 1) { /* this is a special, easy case */ for (i = 0; i < RARRAY_LEN(ary); i++) { rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i])); } } else { /* this is the general case */ volatile VALUE t0 = tmpbuf(r, sizeof(long)); long *p = (long*)RSTRING_PTR(t0); VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */ RBASIC(ary0)->klass = 0; rpermute0(n, r, p, 0, ary0); /* compute and yield repeated permutations */ tmpbuf_discard(t0); RBASIC(ary0)->klass = rb_cArray; } return ary; }
Replaces the contents of self
with the contents of
other_ary
, truncating or expanding if necessary.
a = [ "a", "b", "c", "d", "e" ] a.replace([ "x", "y", "z" ]) #=> ["x", "y", "z"] a #=> ["x", "y", "z"]
VALUE rb_ary_replace(VALUE copy, VALUE orig) { rb_ary_modify_check(copy); orig = to_ary(orig); if (copy == orig) return copy; if (RARRAY_LEN(orig) <= RARRAY_EMBED_LEN_MAX) { VALUE *ptr; VALUE shared = 0; if (ARY_OWNS_HEAP_P(copy)) { xfree(RARRAY_PTR(copy)); } else if (ARY_SHARED_P(copy)) { shared = ARY_SHARED(copy); FL_UNSET_SHARED(copy); } FL_SET_EMBED(copy); ptr = RARRAY_PTR(orig); MEMCPY(RARRAY_PTR(copy), ptr, VALUE, RARRAY_LEN(orig)); if (shared) { rb_ary_decrement_share(shared); } ARY_SET_LEN(copy, RARRAY_LEN(orig)); } else { VALUE shared = ary_make_shared(orig); if (ARY_OWNS_HEAP_P(copy)) { xfree(RARRAY_PTR(copy)); } else { rb_ary_unshare_safe(copy); } FL_UNSET_EMBED(copy); ARY_SET_PTR(copy, RARRAY_PTR(orig)); ARY_SET_LEN(copy, RARRAY_LEN(orig)); rb_ary_set_shared(copy, shared); } return copy; }
Returns a new array containing self
's elements in reverse
order.
[ "a", "b", "c" ].reverse #=> ["c", "b", "a"] [ 1 ].reverse #=> [1]
static VALUE rb_ary_reverse_m(VALUE ary) { long len = RARRAY_LEN(ary); VALUE dup = rb_ary_new2(len); if (len > 0) { VALUE *p1 = RARRAY_PTR(ary); VALUE *p2 = RARRAY_PTR(dup) + len - 1; do *p2-- = *p1++; while (--len > 0); } ARY_SET_LEN(dup, RARRAY_LEN(ary)); return dup; }
Reverses self
in place.
a = [ "a", "b", "c" ] a.reverse! #=> ["c", "b", "a"] a #=> ["c", "b", "a"]
static VALUE rb_ary_reverse_bang(VALUE ary) { return rb_ary_reverse(ary); }
Same as #each, but traverses
self
in reverse order.
a = [ "a", "b", "c" ] a.reverse_each {|x| print x, " " }
produces:
c b a
static VALUE rb_ary_reverse_each(VALUE ary) { long len; RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length); len = RARRAY_LEN(ary); while (len--) { rb_yield(RARRAY_PTR(ary)[len]); if (RARRAY_LEN(ary) < len) { len = RARRAY_LEN(ary); } } return ary; }
Returns the index of the last object in self
==
to obj
.
If a block is given instead of an argument, returns the index of
the first object for which the block returns true
, starting
from the last object.
Returns nil
if no match is found.
See also #index.
If neither block nor argument is given, an Enumerator is returned instead.
a = [ "a", "b", "b", "b", "c" ] a.rindex("b") #=> 3 a.rindex("z") #=> nil a.rindex { |x| x == "b" } #=> 3
static VALUE rb_ary_rindex(int argc, VALUE *argv, VALUE ary) { VALUE val; long i = RARRAY_LEN(ary); if (argc == 0) { RETURN_ENUMERATOR(ary, 0, 0); while (i--) { if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) return LONG2NUM(i); if (i > RARRAY_LEN(ary)) { i = RARRAY_LEN(ary); } } return Qnil; } rb_scan_args(argc, argv, "1", &val); if (rb_block_given_p()) rb_warn("given block not used"); while (i--) { if (rb_equal(RARRAY_PTR(ary)[i], val)) return LONG2NUM(i); if (i > RARRAY_LEN(ary)) { i = RARRAY_LEN(ary); } } return Qnil; }
Returns a new array by rotating self
so that the element at
count
is the first element of the new array.
If count
is negative then it rotates in the opposite
direction, starting from the end of self
where -1
is the last element.
a = [ "a", "b", "c", "d" ] a.rotate #=> ["b", "c", "d", "a"] a #=> ["a", "b", "c", "d"] a.rotate(2) #=> ["c", "d", "a", "b"] a.rotate(-3) #=> ["b", "c", "d", "a"]
static VALUE rb_ary_rotate_m(int argc, VALUE *argv, VALUE ary) { VALUE rotated, *ptr, *ptr2; long len, cnt = 1; switch (argc) { case 1: cnt = NUM2LONG(argv[0]); case 0: break; default: rb_scan_args(argc, argv, "01", NULL); } len = RARRAY_LEN(ary); rotated = rb_ary_new2(len); if (len > 0) { cnt = rotate_count(cnt, len); ptr = RARRAY_PTR(ary); ptr2 = RARRAY_PTR(rotated); len -= cnt; MEMCPY(ptr2, ptr + cnt, VALUE, len); MEMCPY(ptr2 + len, ptr, VALUE, cnt); } ARY_SET_LEN(rotated, RARRAY_LEN(ary)); return rotated; }
Rotates self
in place so that the element at
count
comes first, and returns self
.
If count
is negative then it rotates in the opposite
direction, starting from the end of the array where -1
is the
last element.
a = [ "a", "b", "c", "d" ] a.rotate! #=> ["b", "c", "d", "a"] a #=> ["b", "c", "d", "a"] a.rotate!(2) #=> ["d", "a", "b", "c"] a.rotate!(-3) #=> ["a", "b", "c", "d"]
static VALUE rb_ary_rotate_bang(int argc, VALUE *argv, VALUE ary) { long n = 1; switch (argc) { case 1: n = NUM2LONG(argv[0]); case 0: break; default: rb_scan_args(argc, argv, "01", NULL); } rb_ary_rotate(ary, n); return ary; }
Choose a random element or n
random elements from the array.
The elements are chosen by using random and unique indices into the array in order to ensure that an element doesn't repeat itself unless the array already contained duplicate elements.
If the array is empty the first form returns nil
and the
second form returns an empty array.
The optional rng
argument will be used as the random number
generator.
a = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ] a.sample #=> 7 a.sample(4) #=> [6, 4, 2, 5]
static VALUE rb_ary_sample(int argc, VALUE *argv, VALUE ary) { VALUE nv, result, *ptr; VALUE opts, randgen = rb_cRandom; long n, len, i, j, k, idx[10]; long rnds[numberof(idx)]; if (OPTHASH_GIVEN_P(opts)) { randgen = rb_hash_lookup2(opts, sym_random, randgen); } ptr = RARRAY_PTR(ary); len = RARRAY_LEN(ary); if (argc == 0) { if (len == 0) return Qnil; if (len == 1) { i = 0; } else { i = RAND_UPTO(len); if ((len = RARRAY_LEN(ary)) <= i) return Qnil; ptr = RARRAY_PTR(ary); } return ptr[i]; } rb_scan_args(argc, argv, "1", &nv); n = NUM2LONG(nv); if (n < 0) rb_raise(rb_eArgError, "negative sample number"); if (n > len) n = len; if (n <= numberof(idx)) { for (i = 0; i < n; ++i) { rnds[i] = RAND_UPTO(len - i); } } k = len; len = RARRAY_LEN(ary); ptr = RARRAY_PTR(ary); if (len < k) { if (n <= numberof(idx)) { for (i = 0; i < n; ++i) { if (rnds[i] >= len) { return rb_ary_new2(0); } } } } if (n > len) n = len; switch (n) { case 0: return rb_ary_new2(0); case 1: i = rnds[0]; return rb_ary_new4(1, &ptr[i]); case 2: i = rnds[0]; j = rnds[1]; if (j >= i) j++; return rb_ary_new3(2, ptr[i], ptr[j]); case 3: i = rnds[0]; j = rnds[1]; k = rnds[2]; { long l = j, g = i; if (j >= i) l = i, g = ++j; if (k >= l && (++k >= g)) ++k; } return rb_ary_new3(3, ptr[i], ptr[j], ptr[k]); } if (n <= numberof(idx)) { VALUE *ptr_result; long sorted[numberof(idx)]; sorted[0] = idx[0] = rnds[0]; for (i=1; i<n; i++) { k = rnds[i]; for (j = 0; j < i; ++j) { if (k < sorted[j]) break; ++k; } memmove(&sorted[j+1], &sorted[j], sizeof(sorted[0])*(i-j)); sorted[j] = idx[i] = k; } result = rb_ary_new2(n); ptr_result = RARRAY_PTR(result); for (i=0; i<n; i++) { ptr_result[i] = ptr[idx[i]]; } } else { VALUE *ptr_result; result = rb_ary_new4(len, ptr); RBASIC(result)->klass = 0; ptr_result = RARRAY_PTR(result); RB_GC_GUARD(ary); for (i=0; i<n; i++) { j = RAND_UPTO(len-i) + i; nv = ptr_result[j]; ptr_result[j] = ptr_result[i]; ptr_result[i] = nv; } RBASIC(result)->klass = rb_cArray; } ARY_SET_LEN(result, n); return result; }
Returns a new array containing all elements of ary
for which
the given block
returns a true value.
If no block is given, an Enumerator is returned instead.
[1,2,3,4,5].select { |num| num.even? } #=> [2, 4] a = %w{ a b c d e f } a.select { |v| v =~ /[aeiou]/ } #=> ["a", "e"]
See also Enumerable#select.
static VALUE rb_ary_select(VALUE ary) { VALUE result; long i; RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length); result = rb_ary_new2(RARRAY_LEN(ary)); for (i = 0; i < RARRAY_LEN(ary); i++) { if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) { rb_ary_push(result, rb_ary_elt(ary, i)); } } return result; }
Invokes the given block passing in successive elements from
self
, deleting elements for which the block returns a
false
value.
If changes were made, it will return self
, otherwise it
returns nil
.
See also #keep_if
If no block is given, an Enumerator is returned instead.
static VALUE rb_ary_select_bang(VALUE ary) { long i1, i2; RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length); rb_ary_modify(ary); for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) { VALUE v = RARRAY_PTR(ary)[i1]; if (!RTEST(rb_yield(v))) continue; if (i1 != i2) { rb_ary_store(ary, i2, v); } i2++; } if (RARRAY_LEN(ary) == i2) return Qnil; if (i2 < RARRAY_LEN(ary)) ARY_SET_LEN(ary, i2); return ary; }
Removes the first element of self
and returns it (shifting all
other elements down by one). Returns nil
if the array is
empty.
If a number n
is given, returns an array of the first
n
elements (or less) just like array.slice!(0, n)
does. With ary
containing only the remainder elements, not
including what was shifted to new_ary
. See also #unshift for the opposite effect.
args = [ "-m", "-q", "filename" ] args.shift #=> "-m" args #=> ["-q", "filename"] args = [ "-m", "-q", "filename" ] args.shift(2) #=> ["-m", "-q"] args #=> ["filename"]
static VALUE rb_ary_shift_m(int argc, VALUE *argv, VALUE ary) { VALUE result; long n; if (argc == 0) { return rb_ary_shift(ary); } rb_ary_modify_check(ary); result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST); n = RARRAY_LEN(result); if (ARY_SHARED_P(ary)) { if (ARY_SHARED_NUM(ARY_SHARED(ary)) == 1) { rb_mem_clear(RARRAY_PTR(ary), n); } ARY_INCREASE_PTR(ary, n); } else { MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+n, VALUE, RARRAY_LEN(ary)-n); } ARY_INCREASE_LEN(ary, -n); return result; }
Returns a new array with elements of self
shuffled.
a = [ 1, 2, 3 ] #=> [1, 2, 3] a.shuffle #=> [2, 3, 1]
The optional rng
argument will be used as the random number
generator.
a.shuffle(random: Random.new(1)) #=> [1, 3, 2]
static VALUE rb_ary_shuffle(int argc, VALUE *argv, VALUE ary) { ary = rb_ary_dup(ary); rb_ary_shuffle_bang(argc, argv, ary); return ary; }
Shuffles elements in self
in place.
The optional rng
argument will be used as the random number
generator.
static VALUE rb_ary_shuffle_bang(int argc, VALUE *argv, VALUE ary) { VALUE *ptr, opts, *snap_ptr, randgen = rb_cRandom; long i, snap_len; if (OPTHASH_GIVEN_P(opts)) { randgen = rb_hash_lookup2(opts, sym_random, randgen); } rb_check_arity(argc, 0, 0); rb_ary_modify(ary); i = RARRAY_LEN(ary); ptr = RARRAY_PTR(ary); snap_len = i; snap_ptr = ptr; while (i) { long j = RAND_UPTO(i); VALUE tmp; if (snap_len != RARRAY_LEN(ary) || snap_ptr != RARRAY_PTR(ary)) { rb_raise(rb_eRuntimeError, "modified during shuffle"); } tmp = ptr[--i]; ptr[i] = ptr[j]; ptr[j] = tmp; } return ary; }
Element Reference — Returns the element at index
, or returns a
subarray starting at the start
index and continuing for
length
elements, or returns a subarray specified by
range
of indices.
Negative indices count backward from the end of the array (-1 is the last
element). For start
and range
cases the starting
index is just before an element. Additionally, an empty array is returned
when the starting index for an element range is at the end of the array.
Returns nil
if the index (or starting index) are out of range.
a = [ "a", "b", "c", "d", "e" ] a[2] + a[0] + a[1] #=> "cab" a[6] #=> nil a[1, 2] #=> [ "b", "c" ] a[1..3] #=> [ "b", "c", "d" ] a[4..7] #=> [ "e" ] a[6..10] #=> nil a[-3, 3] #=> [ "c", "d", "e" ] # special cases a[5] #=> nil a[6, 1] #=> nil a[5, 1] #=> [] a[5..10] #=> []
VALUE rb_ary_aref(int argc, VALUE *argv, VALUE ary) { VALUE arg; long beg, len; if (argc == 2) { beg = NUM2LONG(argv[0]); len = NUM2LONG(argv[1]); if (beg < 0) { beg += RARRAY_LEN(ary); } return rb_ary_subseq(ary, beg, len); } if (argc != 1) { rb_scan_args(argc, argv, "11", NULL, NULL); } arg = argv[0]; /* special case - speeding up */ if (FIXNUM_P(arg)) { return rb_ary_entry(ary, FIX2LONG(arg)); } /* check if idx is Range */ switch (rb_range_beg_len(arg, &beg, &len, RARRAY_LEN(ary), 0)) { case Qfalse: break; case Qnil: return Qnil; default: return rb_ary_subseq(ary, beg, len); } return rb_ary_entry(ary, NUM2LONG(arg)); }
Deletes the element(s) given by an index
(optionally up to
length
elements) or by a range
.
Returns the deleted object (or objects), or nil
if the
index
is out of range.
a = [ "a", "b", "c" ] a.slice!(1) #=> "b" a #=> ["a", "c"] a.slice!(-1) #=> "c" a #=> ["a"] a.slice!(100) #=> nil a #=> ["a"]
static VALUE rb_ary_slice_bang(int argc, VALUE *argv, VALUE ary) { VALUE arg1, arg2; long pos, len, orig_len; rb_ary_modify_check(ary); if (argc == 2) { pos = NUM2LONG(argv[0]); len = NUM2LONG(argv[1]); delete_pos_len: if (len < 0) return Qnil; orig_len = RARRAY_LEN(ary); if (pos < 0) { pos += orig_len; if (pos < 0) return Qnil; } else if (orig_len < pos) return Qnil; if (orig_len < pos + len) { len = orig_len - pos; } if (len == 0) return rb_ary_new2(0); arg2 = rb_ary_new4(len, RARRAY_PTR(ary)+pos); RBASIC(arg2)->klass = rb_obj_class(ary); rb_ary_splice(ary, pos, len, Qundef); return arg2; } if (argc != 1) { /* error report */ rb_scan_args(argc, argv, "11", NULL, NULL); } arg1 = argv[0]; if (!FIXNUM_P(arg1)) { switch (rb_range_beg_len(arg1, &pos, &len, RARRAY_LEN(ary), 0)) { case Qtrue: /* valid range */ goto delete_pos_len; case Qnil: /* invalid range */ return Qnil; default: /* not a range */ break; } } return rb_ary_delete_at(ary, NUM2LONG(arg1)); }
Returns a new array created by sorting self
.
Comparisons for the sort will be done using the <=>
operator or using an optional code block.
The block must implement a comparison between a
and
b
, and return -1
, when a
follows
b
, 0
when a
and b
are
equivalent, or +1
if b
follows a
.
See also Enumerable#sort_by.
a = [ "d", "a", "e", "c", "b" ] a.sort #=> ["a", "b", "c", "d", "e"] a.sort { |x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
VALUE rb_ary_sort(VALUE ary) { ary = rb_ary_dup(ary); rb_ary_sort_bang(ary); return ary; }
Sorts self
in place.
Comparisons for the sort will be done using the <=>
operator or using an optional code block.
The block must implement a comparison between a
and
b
, and return -1
, when a
follows
b
, 0
when a
and b
are
equivalent, or +1
if b
follows a
.
See also Enumerable#sort_by.
a = [ "d", "a", "e", "c", "b" ] a.sort! #=> ["a", "b", "c", "d", "e"] a.sort! { |x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
VALUE rb_ary_sort_bang(VALUE ary) { rb_ary_modify(ary); assert(!ARY_SHARED_P(ary)); if (RARRAY_LEN(ary) > 1) { VALUE tmp = ary_make_substitution(ary); /* only ary refers tmp */ struct ary_sort_data data; long len = RARRAY_LEN(ary); RBASIC(tmp)->klass = 0; data.ary = tmp; data.opt_methods = 0; data.opt_inited = 0; ruby_qsort(RARRAY_PTR(tmp), len, sizeof(VALUE), rb_block_given_p()?sort_1:sort_2, &data); if (ARY_EMBED_P(tmp)) { assert(ARY_EMBED_P(tmp)); if (ARY_SHARED_P(ary)) { /* ary might be destructively operated in the given block */ rb_ary_unshare(ary); } FL_SET_EMBED(ary); MEMCPY(RARRAY_PTR(ary), ARY_EMBED_PTR(tmp), VALUE, ARY_EMBED_LEN(tmp)); ARY_SET_LEN(ary, ARY_EMBED_LEN(tmp)); } else { assert(!ARY_EMBED_P(tmp)); if (ARY_HEAP_PTR(ary) == ARY_HEAP_PTR(tmp)) { assert(!ARY_EMBED_P(ary)); FL_UNSET_SHARED(ary); ARY_SET_CAPA(ary, RARRAY_LEN(tmp)); } else { assert(!ARY_SHARED_P(tmp)); if (ARY_EMBED_P(ary)) { FL_UNSET_EMBED(ary); } else if (ARY_SHARED_P(ary)) { /* ary might be destructively operated in the given block */ rb_ary_unshare(ary); } else { xfree(ARY_HEAP_PTR(ary)); } ARY_SET_PTR(ary, RARRAY_PTR(tmp)); ARY_SET_HEAP_LEN(ary, len); ARY_SET_CAPA(ary, RARRAY_LEN(tmp)); } /* tmp was lost ownership for the ptr */ FL_UNSET(tmp, FL_FREEZE); FL_SET_EMBED(tmp); ARY_SET_EMBED_LEN(tmp, 0); FL_SET(tmp, FL_FREEZE); } /* tmp will be GC'ed. */ RBASIC(tmp)->klass = rb_cArray; } return ary; }
Sorts self
in place using a set of keys generated by mapping
the values in self
through the given block.
If no block is given, an Enumerator is returned instead.
static VALUE rb_ary_sort_by_bang(VALUE ary) { VALUE sorted; RETURN_SIZED_ENUMERATOR(ary, 0, 0, rb_ary_length); rb_ary_modify(ary); sorted = rb_block_call(ary, rb_intern("sort_by"), 0, 0, sort_by_i, 0); rb_ary_replace(ary, sorted); return ary; }
Returns first n
elements from the array.
If a negative number is given, raises an ArgumentError.
See also #drop
a = [1, 2, 3, 4, 5, 0] a.take(3) #=> [1, 2, 3]
static VALUE rb_ary_take(VALUE obj, VALUE n) { long len = NUM2LONG(n); if (len < 0) { rb_raise(rb_eArgError, "attempt to take negative size"); } return rb_ary_subseq(obj, 0, len); }
Passes elements to the block until the block returns nil
or
false
, then stops iterating and returns an array of all prior
elements.
If no block is given, an Enumerator is returned instead.
See also #drop_while
a = [1, 2, 3, 4, 5, 0] a.take_while { |i| i < 3 } #=> [1, 2]
static VALUE rb_ary_take_while(VALUE ary) { long i; RETURN_ENUMERATOR(ary, 0, 0); for (i = 0; i < RARRAY_LEN(ary); i++) { if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break; } return rb_ary_take(ary, LONG2FIX(i)); }
Returns self
.
static VALUE rb_ary_to_ary_m(VALUE ary) { return ary; }
Assumes that self
is an array of arrays and transposes the
rows and columns.
a = [[1,2], [3,4], [5,6]] a.transpose #=> [[1, 3, 5], [2, 4, 6]]
If the length of the subarrays don't match, an IndexError is raised.
static VALUE rb_ary_transpose(VALUE ary) { long elen = -1, alen, i, j; VALUE tmp, result = 0; alen = RARRAY_LEN(ary); if (alen == 0) return rb_ary_dup(ary); for (i=0; i<alen; i++) { tmp = to_ary(rb_ary_elt(ary, i)); if (elen < 0) { /* first element */ elen = RARRAY_LEN(tmp); result = rb_ary_new2(elen); for (j=0; j<elen; j++) { rb_ary_store(result, j, rb_ary_new2(alen)); } } else if (elen != RARRAY_LEN(tmp)) { rb_raise(rb_eIndexError, "element size differs (%ld should be %ld)", RARRAY_LEN(tmp), elen); } for (j=0; j<elen; j++) { rb_ary_store(rb_ary_elt(result, j), i, rb_ary_elt(tmp, j)); } } return result; }
Returns a new array by removing duplicate values in self
.
If a block is given, it will use the return value of the block for comparison.
It compares values using their hash and eql? methods for efficiency.
a = [ "a", "a", "b", "b", "c" ] a.uniq # => ["a", "b", "c"] b = [["student","sam"], ["student","george"], ["teacher","matz"]] b.uniq { |s| s.first } # => [["student", "sam"], ["teacher", "matz"]]
static VALUE rb_ary_uniq(VALUE ary) { VALUE hash, uniq, v; long i; if (RARRAY_LEN(ary) <= 1) return rb_ary_dup(ary); if (rb_block_given_p()) { hash = ary_make_hash_by(ary); uniq = ary_new(rb_obj_class(ary), RHASH_SIZE(hash)); st_foreach(RHASH_TBL(hash), push_value, uniq); } else { hash = ary_make_hash(ary); uniq = ary_new(rb_obj_class(ary), RHASH_SIZE(hash)); for (i=0; i<RARRAY_LEN(ary); i++) { st_data_t vv = (st_data_t)(v = rb_ary_elt(ary, i)); if (st_delete(RHASH_TBL(hash), &vv, 0)) { rb_ary_push(uniq, v); } } } ary_recycle_hash(hash); return uniq; }
Removes duplicate elements from self
.
If a block is given, it will use the return value of the block for comparison.
It compares values using their hash and eql? methods for efficiency.
Returns nil
if no changes are made (that is, no duplicates are
found).
a = [ "a", "a", "b", "b", "c" ] a.uniq! # => ["a", "b", "c"] b = [ "a", "b", "c" ] b.uniq! # => nil c = [["student","sam"], ["student","george"], ["teacher","matz"]] c.uniq! { |s| s.first } # => [["student", "sam"], ["teacher", "matz"]]
static VALUE rb_ary_uniq_bang(VALUE ary) { VALUE hash, v; long i, j; rb_ary_modify_check(ary); if (RARRAY_LEN(ary) <= 1) return Qnil; if (rb_block_given_p()) { hash = ary_make_hash_by(ary); if (RARRAY_LEN(ary) == (i = RHASH_SIZE(hash))) { return Qnil; } ARY_SET_LEN(ary, 0); if (ARY_SHARED_P(ary) && !ARY_EMBED_P(ary)) { rb_ary_unshare(ary); FL_SET_EMBED(ary); } ary_resize_capa(ary, i); st_foreach(RHASH_TBL(hash), push_value, ary); } else { hash = ary_make_hash(ary); if (RARRAY_LEN(ary) == (long)RHASH_SIZE(hash)) { return Qnil; } for (i=j=0; i<RARRAY_LEN(ary); i++) { st_data_t vv = (st_data_t)(v = rb_ary_elt(ary, i)); if (st_delete(RHASH_TBL(hash), &vv, 0)) { rb_ary_store(ary, j++, v); } } ARY_SET_LEN(ary, j); } ary_recycle_hash(hash); return ary; }
Prepends objects to the front of self
, moving other elements
upwards. See also #shift for the
opposite effect.
a = [ "b", "c", "d" ] a.unshift("a") #=> ["a", "b", "c", "d"] a.unshift(1, 2) #=> [ 1, 2, "a", "b", "c", "d"]
static VALUE rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary) { long len = RARRAY_LEN(ary); if (argc == 0) { rb_ary_modify_check(ary); return ary; } ary_ensure_room_for_unshift(ary, argc); MEMCPY(RARRAY_PTR(ary), argv, VALUE, argc); ARY_SET_LEN(ary, len + argc); return ary; }
Returns an array containing the elements in self
corresponding
to the given selector
(s).
The selectors may be either integer indices or ranges.
See also #select.
a = %w{ a b c d e f } a.values_at(1, 3, 5) # => ["b", "d", "f"] a.values_at(1, 3, 5, 7) # => ["b", "d", "f", nil] a.values_at(-1, -2, -2, -7) # => ["f", "e", "e", nil] a.values_at(4..6, 3...6) # => ["e", "f", nil, "d", "e", "f"]
static VALUE rb_ary_values_at(int argc, VALUE *argv, VALUE ary) { return rb_get_values_at(ary, RARRAY_LEN(ary), argc, argv, rb_ary_entry); }
Converts any arguments to arrays, then merges elements of self
with corresponding elements from each argument.
This generates a sequence of ary.size
n-element
arrays, where n is one more than the count of arguments.
If the size of any argument is less than the size of the initial array,
nil
values are supplied.
If a block is given, it is invoked for each output array
,
otherwise an array of arrays is returned.
a = [ 4, 5, 6 ] b = [ 7, 8, 9 ] [1, 2, 3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]] [1, 2].zip(a, b) #=> [[1, 4, 7], [2, 5, 8]] a.zip([1, 2], [8]) #=> [[4, 1, 8], [5, 2, nil], [6, nil, nil]]
static VALUE rb_ary_zip(int argc, VALUE *argv, VALUE ary) { int i, j; long len; VALUE result = Qnil; len = RARRAY_LEN(ary); for (i=0; i<argc; i++) { argv[i] = take_items(argv[i], len); } if (!rb_block_given_p()) { result = rb_ary_new2(len); } for (i=0; i<RARRAY_LEN(ary); i++) { VALUE tmp = rb_ary_new2(argc+1); rb_ary_push(tmp, rb_ary_elt(ary, i)); for (j=0; j<argc; j++) { rb_ary_push(tmp, rb_ary_elt(argv[j], i)); } if (NIL_P(result)) { rb_yield(tmp); } else { rb_ary_push(result, tmp); } } return result; }
Set Union — Returns a new array by joining ary
with
other_ary
, excluding any duplicates and preserving the order
from the original array.
It compares elements using their hash and eql? methods for efficiency.
[ "a", "b", "c" ] | [ "c", "d", "a" ] #=> [ "a", "b", "c", "d" ]
See also #uniq.
static VALUE rb_ary_or(VALUE ary1, VALUE ary2) { VALUE hash, ary3, v; st_data_t vv; long i; ary2 = to_ary(ary2); ary3 = rb_ary_new2(RARRAY_LEN(ary1)+RARRAY_LEN(ary2)); hash = ary_add_hash(ary_make_hash(ary1), ary2); for (i=0; i<RARRAY_LEN(ary1); i++) { vv = (st_data_t)(v = rb_ary_elt(ary1, i)); if (st_delete(RHASH_TBL(hash), &vv, 0)) { rb_ary_push(ary3, v); } } for (i=0; i<RARRAY_LEN(ary2); i++) { vv = (st_data_t)(v = rb_ary_elt(ary2, i)); if (st_delete(RHASH_TBL(hash), &vv, 0)) { rb_ary_push(ary3, v); } } ary_recycle_hash(hash); return ary3; }