Maintenance of Ruby 2.0.0 ended on February 24, 2016. Read more
Object is the default root of all Ruby objects. Object inherits from BasicObject which allows creating alternate object hierarchies. Methods on object are available to all classes unless explicitly overridden.
Object mixes in the Kernel module, making the built-in kernel functions globally accessible. Although the instance methods of Object are defined by the Kernel module, we have chosen to document them here for clarity.
When referencing constants in classes inheriting from Object you do not need to use the full namespace.
For example, referencing File
inside YourClass
will find the top-level File class.
In the descriptions of Object's methods, the parameter symbol
refers to a symbol, which is either a quoted string or a Symbol (such as :name
).
ARGF is a stream designed for use in scripts that process files given as command-line arguments or passed in via STDIN.
See ARGF (the class) for more details.
ARGV contains the command line arguments used to run ruby with the first value containing the name of the executable.
A library like OptionParser can be used to process command-line arguments.
DATA is a File that
contains the data section of the executed file. To create a data section
use __END__
:
$ cat t.rb puts DATA.gets __END__ hello world! $ ruby t.rb hello world!
ENV is a Hash-like accessor for environment variables.
See ENV (the class) for more details.
An alias of false
An alias of nil
The copyright string for ruby
The full ruby version string, like ruby -v
prints'
The engine or interpreter this ruby uses.
The patchlevel for this ruby. If this is a development build of ruby the patchlevel will be -1
The platform for this ruby
The date this ruby was released
The SVN revision for this ruby.
The running version of ruby
Holds the original stderr
Holds the original stdin
Holds the original stdout
The Binding of the top level scope
An alias of true
Returns true if two objects do not match (using the =~ method), otherwise false.
static VALUE rb_obj_not_match(VALUE obj1, VALUE obj2) { VALUE result = rb_funcall(obj1, id_match, 1, obj2); return RTEST(result) ? Qfalse : Qtrue; }
Returns 0 if obj
and other
are the same object or
obj == other
, otherwise nil.
The <=> is used by various methods to compare objects, for example Enumerable#sort, Enumerable#max etc.
Your implementation of <=> should return one of the following values: -1, 0, 1 or nil. -1 means self is smaller than other. 0 means self is equal to other. 1 means self is bigger than other. Nil means the two values could not be compared.
When you define <=>, you can include Comparable to gain the methods <=, <,
static VALUE rb_obj_cmp(VALUE obj1, VALUE obj2) { if (obj1 == obj2 || rb_equal(obj1, obj2)) return INT2FIX(0); return Qnil; }
Case Equality – For class Object, effectively the
same as calling #==
, but typically overridden by descendants
to provide meaningful semantics in case
statements.
VALUE rb_equal(VALUE obj1, VALUE obj2) { VALUE result; if (obj1 == obj2) return Qtrue; result = rb_funcall(obj1, id_eq, 1, obj2); if (RTEST(result)) return Qtrue; return Qfalse; }
Pattern Match—Overridden by descendants (notably Regexp
and
String
) to provide meaningful pattern-match semantics.
static VALUE rb_obj_match(VALUE obj1, VALUE obj2) { return Qnil; }
Returns the class of obj. This method must always be called with
an explicit receiver, as class
is also a reserved word in
Ruby.
1.class #=> Fixnum self.class #=> Object
VALUE rb_obj_class(VALUE obj) { return rb_class_real(CLASS_OF(obj)); }
Produces a shallow copy of obj—the instance variables of
obj are copied, but not the objects they reference. Copies the
frozen and tainted state of obj. See also the discussion under
Object#dup
.
class Klass attr_accessor :str end s1 = Klass.new #=> #<Klass:0x401b3a38> s1.str = "Hello" #=> "Hello" s2 = s1.clone #=> #<Klass:0x401b3998 @str="Hello"> s2.str[1,4] = "i" #=> "i" s1.inspect #=> "#<Klass:0x401b3a38 @str=\"Hi\">" s2.inspect #=> "#<Klass:0x401b3998 @str=\"Hi\">"
This method may have class-specific behavior. If so, that behavior will be
documented under the #initialize_copy
method of the class.
VALUE rb_obj_clone(VALUE obj) { VALUE clone; VALUE singleton; if (rb_special_const_p(obj)) { rb_raise(rb_eTypeError, "can't clone %s", rb_obj_classname(obj)); } clone = rb_obj_alloc(rb_obj_class(obj)); singleton = rb_singleton_class_clone_and_attach(obj, clone); RBASIC(clone)->klass = singleton; if (FL_TEST(singleton, FL_SINGLETON)) { rb_singleton_class_attached(singleton, clone); } RBASIC(clone)->flags &= (FL_TAINT|FL_UNTRUSTED); RBASIC(clone)->flags |= RBASIC(obj)->flags & ~(FL_FREEZE|FL_FINALIZE); init_copy(clone, obj); rb_funcall(clone, id_init_clone, 1, obj); RBASIC(clone)->flags |= RBASIC(obj)->flags & FL_FREEZE; return clone; }
Defines a singleton method in the receiver. The method parameter
can be a Proc
, a Method
or an
UnboundMethod
object. If a block is specified, it is used as
the method body.
class A class << self def class_name to_s end end end A.define_singleton_method(:who_am_i) do "I am: #{class_name}" end A.who_am_i # ==> "I am: A" guy = "Bob" guy.define_singleton_method(:hello) { "#{self}: Hello there!" } guy.hello #=> "Bob: Hello there!"
static VALUE rb_obj_define_method(int argc, VALUE *argv, VALUE obj) { VALUE klass = rb_singleton_class(obj); return rb_mod_define_method(argc, argv, klass); }
Prints obj on the given port (default $>
).
Equivalent to:
def display(port=$>) port.write self end
For example:
1.display "cat".display [ 4, 5, 6 ].display puts
produces:
1cat456
static VALUE rb_obj_display(int argc, VALUE *argv, VALUE self) { VALUE out; if (argc == 0) { out = rb_stdout; } else { rb_scan_args(argc, argv, "01", &out); } rb_io_write(out, self); return Qnil; }
Produces a shallow copy of obj—the instance variables of
obj are copied, but not the objects they reference.
dup
copies the tainted state of obj. See also the
discussion under Object#clone
. In general, clone
and dup
may have different semantics in descendant classes.
While clone
is used to duplicate an object, including its
internal state, dup
typically uses the class of the descendant
object to create the new instance.
This method may have class-specific behavior. If so, that behavior will be
documented under the #initialize_copy
method of the class.
VALUE rb_obj_dup(VALUE obj) { VALUE dup; if (rb_special_const_p(obj)) { rb_raise(rb_eTypeError, "can't dup %s", rb_obj_classname(obj)); } dup = rb_obj_alloc(rb_obj_class(obj)); init_copy(dup, obj); rb_funcall(dup, id_init_dup, 1, obj); return dup; }
Creates a new Enumerator which will enumerate
by calling method
on obj
, passing
args
if any.
If a block is given, it will be used to calculate the size of the enumerator without the need to iterate it (see Enumerator#size).
str = "xyz" enum = str.enum_for(:each_byte) enum.each { |b| puts b } # => 120 # => 121 # => 122 # protect an array from being modified by some_method a = [1, 2, 3] some_method(a.to_enum)
It is typical to call #to_enum when defining methods for a generic Enumerable, in case no block is passed.
Here is such an example, with parameter passing and a sizing block:
module Enumerable # a generic method to repeat the values of any enumerable def repeat(n) raise ArgumentError, "#{n} is negative!" if n < 0 unless block_given? return to_enum(__method__, n) do # __method__ is :repeat here sz = size # Call size and multiply by n... sz * n if sz # but return nil if size itself is nil end end each do |*val| n.times { yield *val } end end end %i[hello world].repeat(2) { |w| puts w } # => Prints 'hello', 'hello', 'world', 'world' enum = (1..14).repeat(3) # => returns an Enumerator when called without a block enum.first(4) # => [1, 1, 1, 2] enum.size # => 42
static VALUE obj_to_enum(int argc, VALUE *argv, VALUE obj) { VALUE enumerator, meth = sym_each; if (argc > 0) { --argc; meth = *argv++; } enumerator = rb_enumeratorize_with_size(obj, meth, argc, argv, 0); if (rb_block_given_p()) { enumerator_ptr(enumerator)->size = rb_block_proc(); } return enumerator; }
Equality — At the Object
level, ==
returns
true
only if obj
and other
are the
same object. Typically, this method is overridden in descendant classes to
provide class-specific meaning.
Unlike ==
, the equal?
method should never be
overridden by subclasses as it is used to determine object identity (that
is, a.equal?(b)
if and only if a
is the same
object as b
):
obj = "a" other = obj.dup a == other #=> true a.equal? other #=> false a.equal? a #=> true
The eql?
method returns true
if obj
and other
refer to the same hash key. This is used by Hash to test members for equality. For objects of
class Object
, eql?
is synonymous with
==
. Subclasses normally continue this tradition by aliasing
eql?
to their overridden ==
method, but there are
exceptions. Numeric
types, for example, perform type
conversion across ==
, but not across eql?
, so:
1 == 1.0 #=> true 1.eql? 1.0 #=> false
VALUE rb_obj_equal(VALUE obj1, VALUE obj2) { if (obj1 == obj2) return Qtrue; return Qfalse; }
Adds to obj the instance methods from each module given as a parameter.
module Mod def hello "Hello from Mod.\n" end end class Klass def hello "Hello from Klass.\n" end end k = Klass.new k.hello #=> "Hello from Klass.\n" k.extend(Mod) #=> #<Klass:0x401b3bc8> k.hello #=> "Hello from Mod.\n"
static VALUE rb_obj_extend(int argc, VALUE *argv, VALUE obj) { int i; ID id_extend_object, id_extended; CONST_ID(id_extend_object, "extend_object"); CONST_ID(id_extended, "extended"); rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); for (i = 0; i < argc; i++) Check_Type(argv[i], T_MODULE); while (argc--) { rb_funcall(argv[argc], id_extend_object, 1, obj); rb_funcall(argv[argc], id_extended, 1, obj); } return obj; }
Prevents further modifications to obj. A RuntimeError
will be raised if modification is attempted. There is no way to unfreeze a
frozen object. See also Object#frozen?
.
This method returns self.
a = [ "a", "b", "c" ] a.freeze a << "z"
produces:
prog.rb:3:in `<<': can't modify frozen array (RuntimeError) from prog.rb:3
VALUE rb_obj_freeze(VALUE obj) { if (!OBJ_FROZEN(obj)) { if (rb_safe_level() >= 4 && !OBJ_UNTRUSTED(obj)) { rb_raise(rb_eSecurityError, "Insecure: can't freeze object"); } OBJ_FREEZE(obj); if (SPECIAL_CONST_P(obj)) { if (!immediate_frozen_tbl) { immediate_frozen_tbl = st_init_numtable(); } st_insert(immediate_frozen_tbl, obj, (st_data_t)Qtrue); } } return obj; }
Returns the freeze status of obj.
a = [ "a", "b", "c" ] a.freeze #=> ["a", "b", "c"] a.frozen? #=> true
VALUE rb_obj_frozen_p(VALUE obj) { if (OBJ_FROZEN(obj)) return Qtrue; if (SPECIAL_CONST_P(obj)) { if (!immediate_frozen_tbl) return Qfalse; if (st_lookup(immediate_frozen_tbl, obj, 0)) return Qtrue; } return Qfalse; }
Generates a Fixnum hash value for this object.
This function must have the property that a.eql?(b)
implies
a.hash == b.hash
.
The hash value is used along with eql? by the Hash class to determine if two objects reference the same hash key. Any hash value that exceeds the capacity of a Fixnum will be truncated before being used.
The hash value for an object may not be identical across invocations or implementations of ruby. If you need a stable identifier across ruby invocations and implementations you will need to generate one with a custom method.
VALUE rb_obj_hash(VALUE obj) { VALUE oid = rb_obj_id(obj); #if SIZEOF_LONG == SIZEOF_VOIDP st_index_t index = NUM2LONG(oid); #elif SIZEOF_LONG_LONG == SIZEOF_VOIDP st_index_t index = NUM2LL(oid); #else # error not supported #endif st_index_t h = rb_hash_end(rb_hash_start(index)); return LONG2FIX(h); }
Returns a string containing a human-readable representation of obj. By default, show the class name and the list of the instance variables and their values (by calling inspect on each of them). User defined classes should override this method to make better representation of obj. When overriding this method, it should return a string whose encoding is compatible with the default external encoding.
[ 1, 2, 3..4, 'five' ].inspect #=> "[1, 2, 3..4, \"five\"]" Time.new.inspect #=> "2008-03-08 19:43:39 +0900" class Foo end Foo.new.inspect #=> "#<Foo:0x0300c868>" class Bar def initialize @bar = 1 end end Bar.new.inspect #=> "#<Bar:0x0300c868 @bar=1>" class Baz def to_s "baz" end end Baz.new.inspect #=> "#<Baz:0x0300c868>"
static VALUE rb_obj_inspect(VALUE obj) { if (rb_ivar_count(obj) > 0) { VALUE str; VALUE c = rb_class_name(CLASS_OF(obj)); str = rb_sprintf("-<%"PRIsVALUE":%p", c, (void*)obj); return rb_exec_recursive(inspect_obj, obj, str); } else { return rb_any_to_s(obj); } }
Returns true
if obj is an instance of the given
class. See also Object#kind_of?
.
class A; end class B < A; end class C < B; end b = B.new b.instance_of? A #=> false b.instance_of? B #=> true b.instance_of? C #=> false
VALUE rb_obj_is_instance_of(VALUE obj, VALUE c) { c = class_or_module_required(c); if (rb_obj_class(obj) == c) return Qtrue; return Qfalse; }
Returns true
if the given instance variable is defined in
obj.
class Fred def initialize(p1, p2) @a, @b = p1, p2 end end fred = Fred.new('cat', 99) fred.instance_variable_defined?(:@a) #=> true fred.instance_variable_defined?("@b") #=> true fred.instance_variable_defined?("@c") #=> false
static VALUE rb_obj_ivar_defined(VALUE obj, VALUE iv) { ID id = rb_check_id(&iv); if (!id) { if (rb_is_instance_name(iv)) { return Qfalse; } else { rb_name_error_str(iv, "`%"PRIsVALUE"' is not allowed as an instance variable name", QUOTE(iv)); } } if (!rb_is_instance_id(id)) { rb_name_error(id, "`%"PRIsVALUE"' is not allowed as an instance variable name", QUOTE_ID(id)); } return rb_ivar_defined(obj, id); }
Returns the value of the given instance variable, or nil if the instance
variable is not set. The @
part of the variable name should be
included for regular instance variables. Throws a NameError
exception if the supplied symbol is not valid as an instance variable name.
class Fred def initialize(p1, p2) @a, @b = p1, p2 end end fred = Fred.new('cat', 99) fred.instance_variable_get(:@a) #=> "cat" fred.instance_variable_get("@b") #=> 99
static VALUE rb_obj_ivar_get(VALUE obj, VALUE iv) { ID id = rb_check_id(&iv); if (!id) { if (rb_is_instance_name(iv)) { return Qnil; } else { rb_name_error_str(iv, "`%"PRIsVALUE"' is not allowed as an instance variable name", QUOTE(iv)); } } if (!rb_is_instance_id(id)) { rb_name_error(id, "`%"PRIsVALUE"' is not allowed as an instance variable name", QUOTE_ID(id)); } return rb_ivar_get(obj, id); }
Sets the instance variable names by symbol to object, thereby frustrating the efforts of the class's author to attempt to provide proper encapsulation. The variable did not have to exist prior to this call.
class Fred def initialize(p1, p2) @a, @b = p1, p2 end end fred = Fred.new('cat', 99) fred.instance_variable_set(:@a, 'dog') #=> "dog" fred.instance_variable_set(:@c, 'cat') #=> "cat" fred.inspect #=> "#<Fred:0x401b3da8 @a=\"dog\", @b=99, @c=\"cat\">"
static VALUE rb_obj_ivar_set(VALUE obj, VALUE iv, VALUE val) { ID id = rb_to_id(iv); if (!rb_is_instance_id(id)) { rb_name_error(id, "`%"PRIsVALUE"' is not allowed as an instance variable name", QUOTE_ID(id)); } return rb_ivar_set(obj, id, val); }
Returns an array of instance variable names for the receiver. Note that simply defining an accessor does not create the corresponding instance variable.
class Fred attr_accessor :a1 def initialize @iv = 3 end end Fred.new.instance_variables #=> [:@iv]
VALUE rb_obj_instance_variables(VALUE obj) { VALUE ary; ary = rb_ary_new(); rb_ivar_foreach(obj, ivar_i, ary); return ary; }
Returns true
if class is the class of obj,
or if class is one of the superclasses of obj or modules
included in obj.
module M; end class A include M end class B < A; end class C < B; end b = B.new b.is_a? A #=> true b.is_a? B #=> true b.is_a? C #=> false b.is_a? M #=> true b.kind_of? A #=> true b.kind_of? B #=> true b.kind_of? C #=> false b.kind_of? M #=> true
VALUE rb_obj_is_kind_of(VALUE obj, VALUE c) { VALUE cl = CLASS_OF(obj); c = class_or_module_required(c); return class_search_ancestor(cl, RCLASS_ORIGIN(c)) ? Qtrue : Qfalse; }
Returns true
if class is the class of obj,
or if class is one of the superclasses of obj or modules
included in obj.
module M; end class A include M end class B < A; end class C < B; end b = B.new b.is_a? A #=> true b.is_a? B #=> true b.is_a? C #=> false b.is_a? M #=> true b.kind_of? A #=> true b.kind_of? B #=> true b.kind_of? C #=> false b.kind_of? M #=> true
VALUE rb_obj_is_kind_of(VALUE obj, VALUE c) { VALUE cl = CLASS_OF(obj); c = class_or_module_required(c); return class_search_ancestor(cl, RCLASS_ORIGIN(c)) ? Qtrue : Qfalse; }
Looks up the named method as a receiver in obj, returning a
Method
object (or raising NameError
). The
Method
object acts as a closure in obj's object
instance, so instance variables and the value of self
remain
available.
class Demo def initialize(n) @iv = n end def hello() "Hello, @iv = #{@iv}" end end k = Demo.new(99) m = k.method(:hello) m.call #=> "Hello, @iv = 99" l = Demo.new('Fred') m = l.method("hello") m.call #=> "Hello, @iv = Fred"
VALUE rb_obj_method(VALUE obj, VALUE vid) { ID id = rb_check_id(&vid); if (!id) { rb_method_name_error(CLASS_OF(obj), vid); } return mnew(CLASS_OF(obj), obj, id, rb_cMethod, FALSE); }
Returns a list of the names of public and protected methods of
obj. This will include all the methods accessible in
obj's ancestors. If the all parameter is set to
false
, only those methods in the receiver will be listed.
class Klass def klass_method() end end k = Klass.new k.methods[0..9] #=> [:klass_method, :nil?, :===, # :==~, :!, :eql? # :hash, :<=>, :class, :singleton_class] k.methods.length #=> 57
VALUE rb_obj_methods(int argc, VALUE *argv, VALUE obj) { retry: if (argc == 0) { return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_i); } else { VALUE recur; rb_scan_args(argc, argv, "1", &recur); if (RTEST(recur)) { argc = 0; goto retry; } return rb_obj_singleton_methods(argc, argv, obj); } }
call_seq:
nil.nil? -> true <anything_else>.nil? -> false
Only the object nil responds true
to
nil?
.
static VALUE rb_false(VALUE obj) { return Qfalse; }
Returns an integer identifier for obj
.
The same number will be returned on all calls to id
for a
given object, and no two active objects will share an id.
#object_id is a different
concept from the :name
notation, which returns the symbol id
of name
.
Replaces the deprecated Object#id.
VALUE rb_obj_id(VALUE obj) { /* * 32-bit VALUE space * MSB ------------------------ LSB * false 00000000000000000000000000000000 * true 00000000000000000000000000000010 * nil 00000000000000000000000000000100 * undef 00000000000000000000000000000110 * symbol ssssssssssssssssssssssss00001110 * object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE)) * fixnum fffffffffffffffffffffffffffffff1 * * object_id space * LSB * false 00000000000000000000000000000000 * true 00000000000000000000000000000010 * nil 00000000000000000000000000000100 * undef 00000000000000000000000000000110 * symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4) * object oooooooooooooooooooooooooooooo0 o...o % A = 0 * fixnum fffffffffffffffffffffffffffffff1 bignum if required * * where A = sizeof(RVALUE)/4 * * sizeof(RVALUE) is * 20 if 32-bit, double is 4-byte aligned * 24 if 32-bit, double is 8-byte aligned * 40 if 64-bit */ if (SYMBOL_P(obj)) { return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG; } else if (FLONUM_P(obj)) { #if SIZEOF_LONG == SIZEOF_VOIDP return LONG2NUM((SIGNED_VALUE)obj); #else return LL2NUM((SIGNED_VALUE)obj); #endif } else if (SPECIAL_CONST_P(obj)) { return LONG2NUM((SIGNED_VALUE)obj); } return nonspecial_obj_id(obj); }
Returns the list of private methods accessible to obj. If the
all parameter is set to false
, only those methods in
the receiver will be listed.
VALUE rb_obj_private_methods(int argc, VALUE *argv, VALUE obj) { return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_priv_i); }
Returns the list of protected methods accessible to obj. If the
all parameter is set to false
, only those methods in
the receiver will be listed.
VALUE rb_obj_protected_methods(int argc, VALUE *argv, VALUE obj) { return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_prot_i); }
Similar to method, searches public method only.
VALUE rb_obj_public_method(VALUE obj, VALUE vid) { ID id = rb_check_id(&vid); if (!id) { rb_method_name_error(CLASS_OF(obj), vid); } return mnew(CLASS_OF(obj), obj, id, rb_cMethod, TRUE); }
Returns the list of public methods accessible to obj. If the
all parameter is set to false
, only those methods in
the receiver will be listed.
VALUE rb_obj_public_methods(int argc, VALUE *argv, VALUE obj) { return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_pub_i); }
Invokes the method identified by symbol, passing it any arguments specified. Unlike send, #public_send calls public methods only.
1.public_send(:puts, "hello") # causes NoMethodError
VALUE rb_f_public_send(int argc, VALUE *argv, VALUE recv) { return send_internal(argc, argv, recv, CALL_PUBLIC); }
Removes the named instance variable from obj, returning that variable's value.
class Dummy attr_reader :var def initialize @var = 99 end def remove remove_instance_variable(:@var) end end d = Dummy.new d.var #=> 99 d.remove #=> 99 d.var #=> nil
VALUE rb_obj_remove_instance_variable(VALUE obj, VALUE name) { VALUE val = Qnil; const ID id = rb_check_id(&name); st_data_t n, v; struct st_table *iv_index_tbl; st_data_t index; if (!OBJ_UNTRUSTED(obj) && rb_safe_level() >= 4) rb_raise(rb_eSecurityError, "Insecure: can't modify instance variable"); rb_check_frozen(obj); if (!id) { if (rb_is_instance_name(name)) { rb_name_error_str(name, "instance variable %"PRIsVALUE" not defined", name); } else { rb_name_error_str(name, "`%"PRIsVALUE"' is not allowed as an instance variable name", QUOTE(name)); } } if (!rb_is_instance_id(id)) { rb_name_error(id, "`%"PRIsVALUE"' is not allowed as an instance variable name", QUOTE_ID(id)); } if (SPECIAL_CONST_P(obj)) goto generic; switch (BUILTIN_TYPE(obj)) { case T_OBJECT: iv_index_tbl = ROBJECT_IV_INDEX_TBL(obj); if (!iv_index_tbl) break; if (!st_lookup(iv_index_tbl, (st_data_t)id, &index)) break; if (ROBJECT_NUMIV(obj) <= (long)index) break; val = ROBJECT_IVPTR(obj)[index]; if (val != Qundef) { ROBJECT_IVPTR(obj)[index] = Qundef; return val; } break; case T_CLASS: case T_MODULE: n = id; if (RCLASS_IV_TBL(obj) && st_delete(RCLASS_IV_TBL(obj), &n, &v)) { return (VALUE)v; } break; default: generic: if (FL_TEST(obj, FL_EXIVAR) || rb_special_const_p(obj)) { v = val; if (generic_ivar_remove(obj, (st_data_t)id, &v)) { return (VALUE)v; } } break; } rb_name_error(id, "instance variable %"PRIsVALUE" not defined", QUOTE_ID(id)); UNREACHABLE; }
Returns true
if obj responds to the given method.
Private and protected methods are included in the search only if the
optional second parameter evaluates to true
.
If the method is not implemented, as Process.fork on Windows, File.lchmod on GNU/Linux, etc., false is returned.
If the method is not defined, respond_to_missing?
method is
called and the result is returned.
static VALUE obj_respond_to(int argc, VALUE *argv, VALUE obj) { VALUE mid, priv; ID id; rb_scan_args(argc, argv, "11", &mid, &priv); if (!(id = rb_check_id(&mid))) { if (!rb_method_basic_definition_p(CLASS_OF(obj), idRespond_to_missing)) { VALUE args[2]; args[0] = ID2SYM(rb_to_id(mid)); args[1] = priv; return rb_funcall2(obj, idRespond_to_missing, 2, args); } return Qfalse; } if (basic_obj_respond_to(obj, id, !RTEST(priv))) return Qtrue; return Qfalse; }
DO NOT USE THIS DIRECTLY.
Hook method to return whether the obj can respond to id method or not.
See respond_to?.
static VALUE obj_respond_to_missing(VALUE obj, VALUE mid, VALUE priv) { return Qfalse; }
Invokes the method identified by symbol, passing it any arguments
specified. You can use __send__
if the name send
clashes with an existing method in obj.
class Klass def hello(*args) "Hello " + args.join(' ') end end k = Klass.new k.send :hello, "gentle", "readers" #=> "Hello gentle readers"
VALUE rb_f_send(int argc, VALUE *argv, VALUE recv) { return send_internal(argc, argv, recv, CALL_FCALL); }
Returns the singleton class of obj. This method creates a new singleton class if obj does not have it.
If obj is nil
, true
, or
false
, it returns NilClass, TrueClass, or FalseClass, respectively. If obj is a
Fixnum or a Symbol, it
raises a TypeError.
Object.new.singleton_class #=> #<Class:#<Object:0xb7ce1e24>> String.singleton_class #=> #<Class:String> nil.singleton_class #=> NilClass
static VALUE rb_obj_singleton_class(VALUE obj) { return rb_singleton_class(obj); }
Returns an array of the names of singleton methods for obj. If the optional all parameter is true, the list will include methods in modules included in obj. Only public and protected singleton methods are returned.
module Other def three() end end class Single def Single.four() end end a = Single.new def a.one() end class << a include Other def two() end end Single.singleton_methods #=> [:four] a.singleton_methods(false) #=> [:two, :one] a.singleton_methods #=> [:two, :one, :three]
VALUE rb_obj_singleton_methods(int argc, VALUE *argv, VALUE obj) { VALUE recur, ary, klass, origin; struct method_entry_arg me_arg; st_table *mtbl; if (argc == 0) { recur = Qtrue; } else { rb_scan_args(argc, argv, "01", &recur); } klass = CLASS_OF(obj); origin = RCLASS_ORIGIN(klass); me_arg.list = st_init_numtable(); me_arg.recur = RTEST(recur); if (klass && FL_TEST(klass, FL_SINGLETON)) { if ((mtbl = RCLASS_M_TBL(origin)) != 0) st_foreach(mtbl, method_entry_i, (st_data_t)&me_arg); klass = RCLASS_SUPER(klass); } if (RTEST(recur)) { while (klass && (FL_TEST(klass, FL_SINGLETON) || RB_TYPE_P(klass, T_ICLASS))) { if (klass != origin && (mtbl = RCLASS_M_TBL(klass)) != 0) st_foreach(mtbl, method_entry_i, (st_data_t)&me_arg); klass = RCLASS_SUPER(klass); } } ary = rb_ary_new(); st_foreach(me_arg.list, ins_methods_i, ary); st_free_table(me_arg.list); return ary; }
Marks obj as tainted—if the $SAFE
level is set
appropriately, many method calls which might alter the running programs
environment will refuse to accept tainted strings.
VALUE rb_obj_taint(VALUE obj) { rb_secure(4); if (!OBJ_TAINTED(obj)) { rb_check_frozen(obj); OBJ_TAINT(obj); } return obj; }
Returns true
if the object is tainted.
VALUE rb_obj_tainted(VALUE obj) { if (OBJ_TAINTED(obj)) return Qtrue; return Qfalse; }
Yields x
to the block, and then returns x
. The
primary purpose of this method is to “tap into” a method chain, in order to
perform operations on intermediate results within the chain.
(1..10) .tap {|x| puts "original: #{x.inspect}"} .to_a .tap {|x| puts "array: #{x.inspect}"} .select {|x| x%2==0} .tap {|x| puts "evens: #{x.inspect}"} .map { |x| x*x } .tap {|x| puts "squares: #{x.inspect}"}
VALUE rb_obj_tap(VALUE obj) { rb_yield(obj); return obj; }
Creates a new Enumerator which will enumerate
by calling method
on obj
, passing
args
if any.
If a block is given, it will be used to calculate the size of the enumerator without the need to iterate it (see Enumerator#size).
str = "xyz" enum = str.enum_for(:each_byte) enum.each { |b| puts b } # => 120 # => 121 # => 122 # protect an array from being modified by some_method a = [1, 2, 3] some_method(a.to_enum)
It is typical to call #to_enum when defining methods for a generic Enumerable, in case no block is passed.
Here is such an example, with parameter passing and a sizing block:
module Enumerable # a generic method to repeat the values of any enumerable def repeat(n) raise ArgumentError, "#{n} is negative!" if n < 0 unless block_given? return to_enum(__method__, n) do # __method__ is :repeat here sz = size # Call size and multiply by n... sz * n if sz # but return nil if size itself is nil end end each do |*val| n.times { yield *val } end end end %i[hello world].repeat(2) { |w| puts w } # => Prints 'hello', 'hello', 'world', 'world' enum = (1..14).repeat(3) # => returns an Enumerator when called without a block enum.first(4) # => [1, 1, 1, 2] enum.size # => 42
static VALUE obj_to_enum(int argc, VALUE *argv, VALUE obj) { VALUE enumerator, meth = sym_each; if (argc > 0) { --argc; meth = *argv++; } enumerator = rb_enumeratorize_with_size(obj, meth, argc, argv, 0); if (rb_block_given_p()) { enumerator_ptr(enumerator)->size = rb_block_proc(); } return enumerator; }
Returns a string representing obj. The default to_s
prints the object's class and an encoding of the object id. As a
special case, the top-level object that is the initial execution context of
Ruby programs returns “main.''
VALUE rb_any_to_s(VALUE obj) { VALUE str; VALUE cname = rb_class_name(CLASS_OF(obj)); str = rb_sprintf("#<%"PRIsVALUE":%p>", cname, (void*)obj); OBJ_INFECT(str, obj); return str; }
Removes the untrusted mark from obj.
VALUE rb_obj_trust(VALUE obj) { rb_secure(3); if (OBJ_UNTRUSTED(obj)) { rb_check_frozen(obj); FL_UNSET(obj, FL_UNTRUSTED); } return obj; }
Removes the taint from obj.
VALUE rb_obj_untaint(VALUE obj) { rb_secure(3); if (OBJ_TAINTED(obj)) { rb_check_frozen(obj); FL_UNSET(obj, FL_TAINT); } return obj; }