Maintenance of Ruby 2.0.0 ended on February 24, 2016. Read more
Float
objects represent inexact real numbers using the native
architecture's double-precision floating point representation.
Floating point has a different arithmetic and is a inexact number. So you should know its esoteric system. see following:
The number of decimal digits in a double-precision floating point.
Usually defaults to 15.
The difference between 1 and the smallest double-precision floating point number.
Usually defaults to 2.2204460492503131e-16.
An expression representing positive infinity.
The number of base digits for the double
data type.
Usually defaults to 53.
The largest possible integer in a double-precision floating point number.
Usually defaults to 1.7976931348623157e+308.
The largest positive exponent in a double-precision floating point where 10 raised to this power minus 1.
Usually defaults to 308.
The largest possible exponent value in a double-precision floating point.
Usually defaults to 1024.
The smallest positive integer in a double-precision floating point.
Usually defaults to 2.2250738585072014e-308.
The smallest negative exponent in a double-precision floating point where 10 raised to this power minus 1.
Usually defaults to -307.
The smallest posable exponent value in a double-precision floating point.
Usually defaults to -1021.
An expression representing a value which is “not a number”.
The base of the floating point, or number of unique digits used to represent the number.
Usually defaults to 2 on most systems, which would represent a base-10 decimal.
Represents the rounding mode for floating point addition.
Usually defaults to 1, rounding to the nearest number.
Other modes include:
Indeterminable
Rounding towards zero
Rounding to the nearest number
Rounding towards positive infinity
Rounding towards negative infinity
Return the modulo after division of float
by
other
.
6543.21.modulo(137) #=> 104.21 6543.21.modulo(137.24) #=> 92.9299999999996
static VALUE flo_mod(VALUE x, VALUE y) { double fy; switch (TYPE(y)) { case T_FIXNUM: fy = (double)FIX2LONG(y); break; case T_BIGNUM: fy = rb_big2dbl(y); break; case T_FLOAT: fy = RFLOAT_VALUE(y); break; default: return rb_num_coerce_bin(x, y, '%'); } return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy)); }
Returns a new float which is the product of float
and
other
.
static VALUE flo_mul(VALUE x, VALUE y) { switch (TYPE(y)) { case T_FIXNUM: return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y)); case T_BIGNUM: return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y)); case T_FLOAT: return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, '*'); } }
Raises float
the other
power.
2.0**3 #=> 8.0
static VALUE flo_pow(VALUE x, VALUE y) { switch (TYPE(y)) { case T_FIXNUM: return DBL2NUM(pow(RFLOAT_VALUE(x), (double)FIX2LONG(y))); case T_BIGNUM: return DBL2NUM(pow(RFLOAT_VALUE(x), rb_big2dbl(y))); case T_FLOAT: { double dx = RFLOAT_VALUE(x); double dy = RFLOAT_VALUE(y); if (dx < 0 && dy != round(dy)) return rb_funcall(rb_complex_raw1(x), rb_intern("**"), 1, y); return DBL2NUM(pow(dx, dy)); } default: return rb_num_coerce_bin(x, y, rb_intern("**")); } }
Returns a new float which is the sum of float
and
other
.
static VALUE flo_plus(VALUE x, VALUE y) { switch (TYPE(y)) { case T_FIXNUM: return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y)); case T_BIGNUM: return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y)); case T_FLOAT: return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, '+'); } }
Returns a new float which is the difference of float
and
other
.
static VALUE flo_minus(VALUE x, VALUE y) { switch (TYPE(y)) { case T_FIXNUM: return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y)); case T_BIGNUM: return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y)); case T_FLOAT: return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, '-'); } }
Returns float, negated.
static VALUE flo_uminus(VALUE flt) { return DBL2NUM(-RFLOAT_VALUE(flt)); }
Returns a new float which is the result of dividing float
by
other
.
static VALUE flo_div(VALUE x, VALUE y) { long f_y; double d; switch (TYPE(y)) { case T_FIXNUM: f_y = FIX2LONG(y); return DBL2NUM(RFLOAT_VALUE(x) / (double)f_y); case T_BIGNUM: d = rb_big2dbl(y); return DBL2NUM(RFLOAT_VALUE(x) / d); case T_FLOAT: return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, '/'); } }
true
if flt
is less than real
. The
result of NaN < NaN
is undefined, so the
implementation-dependent value is returned.
static VALUE flo_lt(VALUE x, VALUE y) { double a, b; a = RFLOAT_VALUE(x); switch (TYPE(y)) { case T_FIXNUM: case T_BIGNUM: { VALUE rel = rb_integer_float_cmp(y, x); if (FIXNUM_P(rel)) return -FIX2INT(rel) < 0 ? Qtrue : Qfalse; return Qfalse; } case T_FLOAT: b = RFLOAT_VALUE(y); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif break; default: return rb_num_coerce_relop(x, y, '<'); } #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a < b)?Qtrue:Qfalse; }
true
if flt
is less than or equal to
real
. The result of NaN <= NaN
is undefined,
so the implementation-dependent value is returned.
static VALUE flo_le(VALUE x, VALUE y) { double a, b; a = RFLOAT_VALUE(x); switch (TYPE(y)) { case T_FIXNUM: case T_BIGNUM: { VALUE rel = rb_integer_float_cmp(y, x); if (FIXNUM_P(rel)) return -FIX2INT(rel) <= 0 ? Qtrue : Qfalse; return Qfalse; } case T_FLOAT: b = RFLOAT_VALUE(y); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif break; default: return rb_num_coerce_relop(x, y, rb_intern("<=")); } #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a <= b)?Qtrue:Qfalse; }
Returns -1, 0, +1 or nil depending on whether float
is less
than, equal to, or greater than real
. This is the basis for
the tests in Comparable.
The result of NaN <=> NaN
is undefined, so the
implementation-dependent value is returned.
nil
is returned if the two values are incomparable.
static VALUE flo_cmp(VALUE x, VALUE y) { double a, b; VALUE i; a = RFLOAT_VALUE(x); if (isnan(a)) return Qnil; switch (TYPE(y)) { case T_FIXNUM: case T_BIGNUM: { VALUE rel = rb_integer_float_cmp(y, x); if (FIXNUM_P(rel)) return INT2FIX(-FIX2INT(rel)); return rel; } case T_FLOAT: b = RFLOAT_VALUE(y); break; default: if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) { if (RTEST(i)) { int j = rb_cmpint(i, x, y); j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1); return INT2FIX(j); } if (a > 0.0) return INT2FIX(1); return INT2FIX(-1); } return rb_num_coerce_cmp(x, y, rb_intern("<=>")); } return rb_dbl_cmp(a, b); }
Returns true
only if obj has the same value as
flt. Contrast this with Float#eql?
, which requires
obj to be a Float
. The result of NaN ==
NaN
is undefined, so the implementation-dependent value is returned.
1.0 == 1 #=> true
static VALUE flo_eq(VALUE x, VALUE y) { volatile double a, b; switch (TYPE(y)) { case T_FIXNUM: case T_BIGNUM: return rb_integer_float_eq(y, x); case T_FLOAT: b = RFLOAT_VALUE(y); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif break; default: return num_equal(x, y); } a = RFLOAT_VALUE(x); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a == b)?Qtrue:Qfalse; }
Returns true
only if obj has the same value as
flt. Contrast this with Float#eql?
, which requires
obj to be a Float
. The result of NaN ==
NaN
is undefined, so the implementation-dependent value is returned.
1.0 == 1 #=> true
static VALUE flo_eq(VALUE x, VALUE y) { volatile double a, b; switch (TYPE(y)) { case T_FIXNUM: case T_BIGNUM: return rb_integer_float_eq(y, x); case T_FLOAT: b = RFLOAT_VALUE(y); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif break; default: return num_equal(x, y); } a = RFLOAT_VALUE(x); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a == b)?Qtrue:Qfalse; }
true
if flt
is greater than real
.
The result of NaN > NaN
is undefined, so the
implementation-dependent value is returned.
static VALUE flo_gt(VALUE x, VALUE y) { double a, b; a = RFLOAT_VALUE(x); switch (TYPE(y)) { case T_FIXNUM: case T_BIGNUM: { VALUE rel = rb_integer_float_cmp(y, x); if (FIXNUM_P(rel)) return -FIX2INT(rel) > 0 ? Qtrue : Qfalse; return Qfalse; } case T_FLOAT: b = RFLOAT_VALUE(y); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif break; default: return rb_num_coerce_relop(x, y, '>'); } #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a > b)?Qtrue:Qfalse; }
true
if flt
is greater than or equal to
real
. The result of NaN >= NaN
is undefined,
so the implementation-dependent value is returned.
static VALUE flo_ge(VALUE x, VALUE y) { double a, b; a = RFLOAT_VALUE(x); switch (TYPE(y)) { case T_FIXNUM: case T_BIGNUM: { VALUE rel = rb_integer_float_cmp(y, x); if (FIXNUM_P(rel)) return -FIX2INT(rel) >= 0 ? Qtrue : Qfalse; return Qfalse; } case T_FLOAT: b = RFLOAT_VALUE(y); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif break; default: return rb_num_coerce_relop(x, y, rb_intern(">=")); } #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a >= b)?Qtrue:Qfalse; }
Returns the absolute value of flt.
(-34.56).abs #=> 34.56 -34.56.abs #=> 34.56
static VALUE flo_abs(VALUE flt) { double val = fabs(RFLOAT_VALUE(flt)); return DBL2NUM(val); }
Returns 0 if the value is positive, pi otherwise.
static VALUE float_arg(VALUE self) { if (isnan(RFLOAT_VALUE(self))) return self; if (f_tpositive_p(self)) return INT2FIX(0); return rb_const_get(rb_mMath, id_PI); }
Returns 0 if the value is positive, pi otherwise.
static VALUE float_arg(VALUE self) { if (isnan(RFLOAT_VALUE(self))) return self; if (f_tpositive_p(self)) return INT2FIX(0); return rb_const_get(rb_mMath, id_PI); }
Returns the smallest Integer
greater than or equal to
flt.
1.2.ceil #=> 2 2.0.ceil #=> 2 (-1.2).ceil #=> -1 (-2.0).ceil #=> -2
static VALUE flo_ceil(VALUE num) { double f = ceil(RFLOAT_VALUE(num)); long val; if (!FIXABLE(f)) { return rb_dbl2big(f); } val = (long)f; return LONG2FIX(val); }
Returns an array with both aNumeric and flt represented
as Float
objects. This is achieved by converting
aNumeric to a Float
.
1.2.coerce(3) #=> [3.0, 1.2] 2.5.coerce(1.1) #=> [1.1, 2.5]
static VALUE flo_coerce(VALUE x, VALUE y) { return rb_assoc_new(rb_Float(y), x); }
Returns the denominator (always positive). The result is machine dependent.
See numerator.
static VALUE float_denominator(VALUE self) { double d = RFLOAT_VALUE(self); if (isinf(d) || isnan(d)) return INT2FIX(1); return rb_call_super(0, 0); }
See Numeric#divmod.
42.0.divmod 6 #=> [7, 0.0] 42.0.divmod 5 #=> [8, 2.0]
static VALUE flo_divmod(VALUE x, VALUE y) { double fy, div, mod; volatile VALUE a, b; switch (TYPE(y)) { case T_FIXNUM: fy = (double)FIX2LONG(y); break; case T_BIGNUM: fy = rb_big2dbl(y); break; case T_FLOAT: fy = RFLOAT_VALUE(y); break; default: return rb_num_coerce_bin(x, y, rb_intern("divmod")); } flodivmod(RFLOAT_VALUE(x), fy, &div, &mod); a = dbl2ival(div); b = DBL2NUM(mod); return rb_assoc_new(a, b); }
Returns true
only if obj is a Float
with
the same value as flt. Contrast this with Float#==
,
which performs type conversions. The result of NaN.eql?(NaN)
is undefined, so the implementation-dependent value is returned.
1.0.eql?(1) #=> false
static VALUE flo_eql(VALUE x, VALUE y) { if (RB_TYPE_P(y, T_FLOAT)) { double a = RFLOAT_VALUE(x); double b = RFLOAT_VALUE(y); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a) || isnan(b)) return Qfalse; #endif if (a == b) return Qtrue; } return Qfalse; }
Returns float / numeric.
static VALUE flo_quo(VALUE x, VALUE y) { return rb_funcall(x, '/', 1, y); }
Returns true
if flt is a valid IEEE floating point
number (it is not infinite, and nan?
is false
).
static VALUE flo_is_finite_p(VALUE num) { double value = RFLOAT_VALUE(num); #if HAVE_ISFINITE if (!isfinite(value)) return Qfalse; #else if (isinf(value) || isnan(value)) return Qfalse; #endif return Qtrue; }
Returns the largest integer less than or equal to flt.
1.2.floor #=> 1 2.0.floor #=> 2 (-1.2).floor #=> -2 (-2.0).floor #=> -2
static VALUE flo_floor(VALUE num) { double f = floor(RFLOAT_VALUE(num)); long val; if (!FIXABLE(f)) { return rb_dbl2big(f); } val = (long)f; return LONG2FIX(val); }
Returns a hash code for this float.
static VALUE flo_hash(VALUE num) { double d; st_index_t hash; d = RFLOAT_VALUE(num); /* normalize -0.0 to 0.0 */ if (d == 0.0) d = 0.0; hash = rb_memhash(&d, sizeof(d)); return LONG2FIX(hash); }
Returns nil
, -1, or +1 depending on whether flt is
finite, -infinity, or +infinity.
(0.0).infinite? #=> nil (-1.0/0.0).infinite? #=> -1 (+1.0/0.0).infinite? #=> 1
static VALUE flo_is_infinite_p(VALUE num) { double value = RFLOAT_VALUE(num); if (isinf(value)) { return INT2FIX( value < 0 ? -1 : 1 ); } return Qnil; }
Returns the absolute value of flt.
(-34.56).abs #=> 34.56 -34.56.abs #=> 34.56
static VALUE flo_abs(VALUE flt) { double val = fabs(RFLOAT_VALUE(flt)); return DBL2NUM(val); }
Return the modulo after division of float
by
other
.
6543.21.modulo(137) #=> 104.21 6543.21.modulo(137.24) #=> 92.9299999999996
static VALUE flo_mod(VALUE x, VALUE y) { double fy; switch (TYPE(y)) { case T_FIXNUM: fy = (double)FIX2LONG(y); break; case T_BIGNUM: fy = rb_big2dbl(y); break; case T_FLOAT: fy = RFLOAT_VALUE(y); break; default: return rb_num_coerce_bin(x, y, '%'); } return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy)); }
Returns true
if flt is an invalid IEEE floating point
number.
a = -1.0 #=> -1.0 a.nan? #=> false a = 0.0/0.0 #=> NaN a.nan? #=> true
static VALUE flo_is_nan_p(VALUE num) { double value = RFLOAT_VALUE(num); return isnan(value) ? Qtrue : Qfalse; }
Returns the numerator. The result is machine dependent.
n = 0.3.numerator #=> 5404319552844595 d = 0.3.denominator #=> 18014398509481984 n.fdiv(d) #=> 0.3
static VALUE float_numerator(VALUE self) { double d = RFLOAT_VALUE(self); if (isinf(d) || isnan(d)) return self; return rb_call_super(0, 0); }
Returns 0 if the value is positive, pi otherwise.
static VALUE float_arg(VALUE self) { if (isnan(RFLOAT_VALUE(self))) return self; if (f_tpositive_p(self)) return INT2FIX(0); return rb_const_get(rb_mMath, id_PI); }
Returns float / numeric.
static VALUE flo_quo(VALUE x, VALUE y) { return rb_funcall(x, '/', 1, y); }
Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|). if the optional eps is not given, it will be chosen automatically.
0.3.rationalize #=> (3/10) 1.333.rationalize #=> (1333/1000) 1.333.rationalize(0.01) #=> (4/3)
See to_r.
static VALUE float_rationalize(int argc, VALUE *argv, VALUE self) { VALUE e, a, b, p, q; if (f_negative_p(self)) return f_negate(float_rationalize(argc, argv, f_abs(self))); rb_scan_args(argc, argv, "01", &e); if (argc != 0) { e = f_abs(e); a = f_sub(self, e); b = f_add(self, e); } else { VALUE f, n; float_decode_internal(self, &f, &n); if (f_zero_p(f) || f_positive_p(n)) return rb_rational_new1(f_lshift(f, n)); #if FLT_RADIX == 2 { VALUE two_times_f, den; two_times_f = f_mul(TWO, f); den = f_lshift(ONE, f_sub(ONE, n)); a = rb_rational_new2(f_sub(two_times_f, ONE), den); b = rb_rational_new2(f_add(two_times_f, ONE), den); } #else { VALUE radix_times_f, den; radix_times_f = f_mul(INT2FIX(FLT_RADIX), f); den = f_expt(INT2FIX(FLT_RADIX), f_sub(ONE, n)); a = rb_rational_new2(f_sub(radix_times_f, INT2FIX(FLT_RADIX - 1)), den); b = rb_rational_new2(f_add(radix_times_f, INT2FIX(FLT_RADIX - 1)), den); } #endif } if (f_eqeq_p(a, b)) return f_to_r(self); nurat_rationalize_internal(a, b, &p, &q); return rb_rational_new2(p, q); }
Rounds flt to a given precision in decimal digits (default 0 digits). Precision may be negative. Returns a floating point number when ndigits is more than zero.
1.4.round #=> 1 1.5.round #=> 2 1.6.round #=> 2 (-1.5).round #=> -2 1.234567.round(2) #=> 1.23 1.234567.round(3) #=> 1.235 1.234567.round(4) #=> 1.2346 1.234567.round(5) #=> 1.23457 34567.89.round(-5) #=> 0 34567.89.round(-4) #=> 30000 34567.89.round(-3) #=> 35000 34567.89.round(-2) #=> 34600 34567.89.round(-1) #=> 34570 34567.89.round(0) #=> 34568 34567.89.round(1) #=> 34567.9 34567.89.round(2) #=> 34567.89 34567.89.round(3) #=> 34567.89
static VALUE flo_round(int argc, VALUE *argv, VALUE num) { VALUE nd; double number, f; int ndigits = 0; int binexp; enum {float_dig = DBL_DIG+2}; if (argc > 0 && rb_scan_args(argc, argv, "01", &nd) == 1) { ndigits = NUM2INT(nd); } if (ndigits < 0) { return int_round_0(flo_truncate(num), ndigits); } number = RFLOAT_VALUE(num); if (ndigits == 0) { return dbl2ival(number); } frexp(number, &binexp); /* Let `exp` be such that `number` is written as:"0.#{digits}e#{exp}", i.e. such that 10 ** (exp - 1) <= |number| < 10 ** exp Recall that up to float_dig digits can be needed to represent a double, so if ndigits + exp >= float_dig, the intermediate value (number * 10 ** ndigits) will be an integer and thus the result is the original number. If ndigits + exp <= 0, the result is 0 or "1e#{exp}", so if ndigits + exp < 0, the result is 0. We have: 2 ** (binexp-1) <= |number| < 2 ** binexp 10 ** ((binexp-1)/log_2(10)) <= |number| < 10 ** (binexp/log_2(10)) If binexp >= 0, and since log_2(10) = 3.322259: 10 ** (binexp/4 - 1) < |number| < 10 ** (binexp/3) floor(binexp/4) <= exp <= ceil(binexp/3) If binexp <= 0, swap the /4 and the /3 So if ndigits + floor(binexp/(4 or 3)) >= float_dig, the result is number If ndigits + ceil(binexp/(3 or 4)) < 0 the result is 0 */ if (isinf(number) || isnan(number) || (ndigits >= float_dig - (binexp > 0 ? binexp / 4 : binexp / 3 - 1))) { return num; } if (ndigits < - (binexp > 0 ? binexp / 3 + 1 : binexp / 4)) { return DBL2NUM(0); } f = pow(10, ndigits); return DBL2NUM(round(number * f) / f); }
As flt
is already a float, returns self
.
static VALUE flo_to_f(VALUE num) { return num; }
Returns flt truncated to an Integer
.
static VALUE flo_truncate(VALUE num) { double f = RFLOAT_VALUE(num); long val; if (f > 0.0) f = floor(f); if (f < 0.0) f = ceil(f); if (!FIXABLE(f)) { return rb_dbl2big(f); } val = (long)f; return LONG2FIX(val); }
Returns flt truncated to an Integer
.
static VALUE flo_truncate(VALUE num) { double f = RFLOAT_VALUE(num); long val; if (f > 0.0) f = floor(f); if (f < 0.0) f = ceil(f); if (!FIXABLE(f)) { return rb_dbl2big(f); } val = (long)f; return LONG2FIX(val); }
Returns the value as a rational.
NOTE: 0.3.to_r isn't the same as '0.3'.to_r. The latter is equivalent to '3/10'.to_r, but the former isn't so.
2.0.to_r #=> (2/1) 2.5.to_r #=> (5/2) -0.75.to_r #=> (-3/4) 0.0.to_r #=> (0/1)
See rationalize.
static VALUE float_to_r(VALUE self) { VALUE f, n; float_decode_internal(self, &f, &n); #if FLT_RADIX == 2 { long ln = FIX2LONG(n); if (ln == 0) return f_to_r(f); if (ln > 0) return f_to_r(f_lshift(f, n)); ln = -ln; return rb_rational_new2(f, f_lshift(ONE, INT2FIX(ln))); } #else return f_to_r(f_mul(f, f_expt(INT2FIX(FLT_RADIX), n))); #endif }
Returns a string containing a representation of self. As well as a fixed or
exponential form of the number, the call may return
“NaN
'', “Infinity
'', and
“-Infinity
''.
static VALUE flo_to_s(VALUE flt) { char *ruby_dtoa(double d_, int mode, int ndigits, int *decpt, int *sign, char **rve); enum {decimal_mant = DBL_MANT_DIG-DBL_DIG}; enum {float_dig = DBL_DIG+1}; char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10]; double value = RFLOAT_VALUE(flt); VALUE s; char *p, *e; int sign, decpt, digs; if (isinf(value)) return rb_usascii_str_new2(value < 0 ? "-Infinity" : "Infinity"); else if (isnan(value)) return rb_usascii_str_new2("NaN"); p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e); s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0); if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1; memcpy(buf, p, digs); xfree(p); if (decpt > 0) { if (decpt < digs) { memmove(buf + decpt + 1, buf + decpt, digs - decpt); buf[decpt] = '.'; rb_str_cat(s, buf, digs + 1); } else if (decpt <= DBL_DIG) { long len; char *ptr; rb_str_cat(s, buf, digs); rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2); ptr = RSTRING_PTR(s) + len; if (decpt > digs) { memset(ptr, '0', decpt - digs); ptr += decpt - digs; } memcpy(ptr, ".0", 2); } else { goto exp; } } else if (decpt > -4) { long len; char *ptr; rb_str_cat(s, "0.", 2); rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs); ptr = RSTRING_PTR(s); memset(ptr += len, '0', -decpt); memcpy(ptr -= decpt, buf, digs); } else { exp: if (digs > 1) { memmove(buf + 2, buf + 1, digs - 1); } else { buf[2] = '0'; digs++; } buf[1] = '.'; rb_str_cat(s, buf, digs + 1); rb_str_catf(s, "e%+03d", decpt - 1); } return s; }