Float objects represent real numbers using the native
architecture's double-precision floating point representation.
Convert obj to a float.
static VALUE
rb_flo_induced_from(klass, x)
VALUE klass, x;
{
switch (TYPE(x)) {
case T_FIXNUM:
case T_BIGNUM:
return rb_funcall(x, rb_intern("to_f"), 0);
case T_FLOAT:
return x;
default:
rb_raise(rb_eTypeError, "failed to convert %s into Float",
rb_obj_classname(x));
}
}
Return the modulo after division of flt by other.
6543.21.modulo(137) #=> 104.21 6543.21.modulo(137.24) #=> 92.9299999999996
static VALUE
flo_mod(x, y)
VALUE x, y;
{
double fy, mod;
switch (TYPE(y)) {
case T_FIXNUM:
fy = (double)FIX2LONG(y);
break;
case T_BIGNUM:
fy = rb_big2dbl(y);
break;
case T_FLOAT:
fy = RFLOAT(y)->value;
break;
default:
return rb_num_coerce_bin(x, y);
}
flodivmod(RFLOAT(x)->value, fy, 0, &mod);
return rb_float_new(mod);
}
Returns a new float which is the product of float and
other.
static VALUE
flo_mul(x, y)
VALUE x, y;
{
switch (TYPE(y)) {
case T_FIXNUM:
return rb_float_new(RFLOAT(x)->value * (double)FIX2LONG(y));
case T_BIGNUM:
return rb_float_new(RFLOAT(x)->value * rb_big2dbl(y));
case T_FLOAT:
return rb_float_new(RFLOAT(x)->value * RFLOAT(y)->value);
default:
return rb_num_coerce_bin(x, y);
}
}
Raises float the other power.
static VALUE
flo_pow(x, y)
VALUE x, y;
{
switch (TYPE(y)) {
case T_FIXNUM:
return rb_float_new(pow(RFLOAT(x)->value, (double)FIX2LONG(y)));
case T_BIGNUM:
return rb_float_new(pow(RFLOAT(x)->value, rb_big2dbl(y)));
case T_FLOAT:
return rb_float_new(pow(RFLOAT(x)->value, RFLOAT(y)->value));
default:
return rb_num_coerce_bin(x, y);
}
}
Returns a new float which is the sum of float and
other.
static VALUE
flo_plus(x, y)
VALUE x, y;
{
switch (TYPE(y)) {
case T_FIXNUM:
return rb_float_new(RFLOAT(x)->value + (double)FIX2LONG(y));
case T_BIGNUM:
return rb_float_new(RFLOAT(x)->value + rb_big2dbl(y));
case T_FLOAT:
return rb_float_new(RFLOAT(x)->value + RFLOAT(y)->value);
default:
return rb_num_coerce_bin(x, y);
}
}
Returns a new float which is the difference of float and
other.
static VALUE
flo_minus(x, y)
VALUE x, y;
{
switch (TYPE(y)) {
case T_FIXNUM:
return rb_float_new(RFLOAT(x)->value - (double)FIX2LONG(y));
case T_BIGNUM:
return rb_float_new(RFLOAT(x)->value - rb_big2dbl(y));
case T_FLOAT:
return rb_float_new(RFLOAT(x)->value - RFLOAT(y)->value);
default:
return rb_num_coerce_bin(x, y);
}
}
Returns float, negated.
static VALUE
flo_uminus(flt)
VALUE flt;
{
return rb_float_new(-RFLOAT(flt)->value);
}
Returns a new float which is the result of dividing float by
other.
static VALUE
flo_div(x, y)
VALUE x, y;
{
long f_y;
double d;
switch (TYPE(y)) {
case T_FIXNUM:
f_y = FIX2LONG(y);
return rb_float_new(RFLOAT(x)->value / (double)f_y);
case T_BIGNUM:
d = rb_big2dbl(y);
return rb_float_new(RFLOAT(x)->value / d);
case T_FLOAT:
return rb_float_new(RFLOAT(x)->value / RFLOAT(y)->value);
default:
return rb_num_coerce_bin(x, y);
}
}
true if flt is less than other.
static VALUE
flo_lt(x, y)
VALUE x, y;
{
double a, b;
a = RFLOAT(x)->value;
switch (TYPE(y)) {
case T_FIXNUM:
b = (double)FIX2LONG(y);
break;
case T_BIGNUM:
b = rb_big2dbl(y);
break;
case T_FLOAT:
b = RFLOAT(y)->value;
if (isnan(b)) return Qfalse;
break;
default:
return rb_num_coerce_relop(x, y);
}
if (isnan(a)) return Qfalse;
return (a < b)?Qtrue:Qfalse;
}
true if flt is less than or equal to
other.
static VALUE
flo_le(x, y)
VALUE x, y;
{
double a, b;
a = RFLOAT(x)->value;
switch (TYPE(y)) {
case T_FIXNUM:
b = (double)FIX2LONG(y);
break;
case T_BIGNUM:
b = rb_big2dbl(y);
break;
case T_FLOAT:
b = RFLOAT(y)->value;
if (isnan(b)) return Qfalse;
break;
default:
return rb_num_coerce_relop(x, y);
}
if (isnan(a)) return Qfalse;
return (a <= b)?Qtrue:Qfalse;
}
Returns -1, 0, or +1 depending on whether flt is less than, equal
to, or greater than numeric. This is the basis for the tests in
Comparable.
static VALUE
flo_cmp(x, y)
VALUE x, y;
{
double a, b;
a = RFLOAT(x)->value;
switch (TYPE(y)) {
case T_FIXNUM:
b = (double)FIX2LONG(y);
break;
case T_BIGNUM:
if (isinf(a)) {
if (a > 0.0) return INT2FIX(1);
else return INT2FIX(-1);
}
b = rb_big2dbl(y);
break;
case T_FLOAT:
b = RFLOAT(y)->value;
break;
default:
return rb_num_coerce_cmp(x, y);
}
return rb_dbl_cmp(a, b);
}
Returns true only if obj has the same value as
flt. Contrast this with Float#eql?, which requires
obj to be a Float.
1.0 == 1 #=> true
static VALUE
flo_eq(x, y)
VALUE x, y;
{
volatile double a, b;
switch (TYPE(y)) {
case T_FIXNUM:
b = FIX2LONG(y);
break;
case T_BIGNUM:
b = rb_big2dbl(y);
break;
case T_FLOAT:
b = RFLOAT(y)->value;
if (isnan(b)) return Qfalse;
break;
default:
return num_equal(x, y);
}
a = RFLOAT(x)->value;
if (isnan(a)) return Qfalse;
return (a == b)?Qtrue:Qfalse;
}
true if flt is greater than other.
static VALUE
flo_gt(x, y)
VALUE x, y;
{
double a, b;
a = RFLOAT(x)->value;
switch (TYPE(y)) {
case T_FIXNUM:
b = (double)FIX2LONG(y);
break;
case T_BIGNUM:
b = rb_big2dbl(y);
break;
case T_FLOAT:
b = RFLOAT(y)->value;
if (isnan(b)) return Qfalse;
break;
default:
return rb_num_coerce_relop(x, y);
}
if (isnan(a)) return Qfalse;
return (a > b)?Qtrue:Qfalse;
}
true if flt is greater than or equal to
other.
static VALUE
flo_ge(x, y)
VALUE x, y;
{
double a, b;
a = RFLOAT(x)->value;
switch (TYPE(y)) {
case T_FIXNUM:
b = (double)FIX2LONG(y);
break;
case T_BIGNUM:
b = rb_big2dbl(y);
break;
case T_FLOAT:
b = RFLOAT(y)->value;
if (isnan(b)) return Qfalse;
break;
default:
return rb_num_coerce_relop(x, y);
}
if (isnan(a)) return Qfalse;
return (a >= b)?Qtrue:Qfalse;
}
Returns the absolute value of flt.
(-34.56).abs #=> 34.56 -34.56.abs #=> 34.56
static VALUE
flo_abs(flt)
VALUE flt;
{
double val = fabs(RFLOAT(flt)->value);
return rb_float_new(val);
}
Returns the smallest Integer greater than or equal to
flt.
1.2.ceil #=> 2 2.0.ceil #=> 2 (-1.2).ceil #=> -1 (-2.0).ceil #=> -2
static VALUE
flo_ceil(num)
VALUE num;
{
double f = ceil(RFLOAT(num)->value);
long val;
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = f;
return LONG2FIX(val);
}
MISSING: documentation
static VALUE
flo_coerce(x, y)
VALUE x, y;
{
return rb_assoc_new(rb_Float(y), x);
}
See Numeric#divmod.
static VALUE
flo_divmod(x, y)
VALUE x, y;
{
double fy, div, mod, val;
volatile VALUE a, b;
switch (TYPE(y)) {
case T_FIXNUM:
fy = (double)FIX2LONG(y);
break;
case T_BIGNUM:
fy = rb_big2dbl(y);
break;
case T_FLOAT:
fy = RFLOAT(y)->value;
break;
default:
return rb_num_coerce_bin(x, y);
}
flodivmod(RFLOAT(x)->value, fy, &div, &mod);
if (FIXABLE(div)) {
val = round(div);
a = LONG2FIX(val);
}
else {
a = rb_dbl2big(div);
}
b = rb_float_new(mod);
return rb_assoc_new(a, b);
}
Returns true only if obj is a Float with
the same value as flt. Contrast this with Float#==,
which performs type conversions.
1.0.eql?(1) #=> false
static VALUE
flo_eql(x, y)
VALUE x, y;
{
if (TYPE(y) == T_FLOAT) {
double a = RFLOAT(x)->value;
double b = RFLOAT(y)->value;
if (isnan(a) || isnan(b)) return Qfalse;
if (a == b) return Qtrue;
}
return Qfalse;
}
Returns true if flt is a valid IEEE floating point
number (it is not infinite, and nan? is false).
static VALUE
flo_is_finite_p(num)
VALUE num;
{
double value = RFLOAT(num)->value;
#if HAVE_FINITE
if (!finite(value))
return Qfalse;
#else
if (isinf(value) || isnan(value))
return Qfalse;
#endif
return Qtrue;
}
Returns the largest integer less than or equal to flt.
1.2.floor #=> 1 2.0.floor #=> 2 (-1.2).floor #=> -2 (-2.0).floor #=> -2
static VALUE
flo_floor(num)
VALUE num;
{
double f = floor(RFLOAT(num)->value);
long val;
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = f;
return LONG2FIX(val);
}
Returns a hash code for this float.
static VALUE
flo_hash(num)
VALUE num;
{
double d;
char *c;
int i, hash;
d = RFLOAT(num)->value;
if (d == 0) d = fabs(d);
c = (char*)&d;
for (hash=0, i=0; i<sizeof(double);i++) {
hash = (hash * 971) ^ (unsigned char)c[i];
}
if (hash < 0) hash = -hash;
return INT2FIX(hash);
}
Returns nil, -1, or +1 depending on whether flt is
finite, -infinity, or +infinity.
(0.0).infinite? #=> nil (-1.0/0.0).infinite? #=> -1 (+1.0/0.0).infinite? #=> 1
static VALUE
flo_is_infinite_p(num)
VALUE num;
{
double value = RFLOAT(num)->value;
if (isinf(value)) {
return INT2FIX( value < 0 ? -1 : 1 );
}
return Qnil;
}
Return the modulo after division of flt by other.
6543.21.modulo(137) #=> 104.21 6543.21.modulo(137.24) #=> 92.9299999999996
static VALUE
flo_mod(x, y)
VALUE x, y;
{
double fy, mod;
switch (TYPE(y)) {
case T_FIXNUM:
fy = (double)FIX2LONG(y);
break;
case T_BIGNUM:
fy = rb_big2dbl(y);
break;
case T_FLOAT:
fy = RFLOAT(y)->value;
break;
default:
return rb_num_coerce_bin(x, y);
}
flodivmod(RFLOAT(x)->value, fy, 0, &mod);
return rb_float_new(mod);
}
Returns true if flt is an invalid IEEE floating point
number.
a = -1.0 #=> -1.0 a.nan? #=> false a = 0.0/0.0 #=> NaN a.nan? #=> true
static VALUE
flo_is_nan_p(num)
VALUE num;
{
double value = RFLOAT(num)->value;
return isnan(value) ? Qtrue : Qfalse;
}
Rounds flt to the nearest integer. Equivalent to:
def round return (self+0.5).floor if self > 0.0 return (self-0.5).ceil if self < 0.0 return 0 end 1.5.round #=> 2 (-1.5).round #=> -2
static VALUE
flo_round(num)
VALUE num;
{
double f = RFLOAT(num)->value;
long val;
f = round(f);
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = f;
return LONG2FIX(val);
}
As flt is already a float, returns self.
static VALUE
flo_to_f(num)
VALUE num;
{
return num;
}
Returns flt truncated to an Integer.
static VALUE
flo_truncate(num)
VALUE num;
{
double f = RFLOAT(num)->value;
long val;
if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = f;
return LONG2FIX(val);
}
Returns flt truncated to an Integer.
static VALUE
flo_truncate(num)
VALUE num;
{
double f = RFLOAT(num)->value;
long val;
if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = f;
return LONG2FIX(val);
}
Returns a string containing a representation of self. As well as a fixed or
exponential form of the number, the call may return
“NaN'', “Infinity'', and
“-Infinity''.
static VALUE
flo_to_s(flt)
VALUE flt;
{
char buf[32];
double value = RFLOAT(flt)->value;
char *p, *e;
if (isinf(value))
return rb_str_new2(value < 0 ? "-Infinity" : "Infinity");
else if(isnan(value))
return rb_str_new2("NaN");
sprintf(buf, "%#.15g", value); /* ensure to print decimal point */
if (!(e = strchr(buf, 'e'))) {
e = buf + strlen(buf);
}
if (!ISDIGIT(e[-1])) { /* reformat if ended with decimal point (ex 111111111111111.) */
sprintf(buf, "%#.14e", value);
if (!(e = strchr(buf, 'e'))) {
e = buf + strlen(buf);
}
}
p = e;
while (p[-1]=='0' && ISDIGIT(p[-2]))
p--;
memmove(p, e, strlen(e)+1);
return rb_str_new2(buf);
}