A Fixnum holds Integer values that can be
represented in a native machine word (minus 1 bit). If any operation on a
Fixnum exceeds this range, the value is automatically
converted to a Bignum.
Fixnum objects have immediate value. This means that when they
are assigned or passed as parameters, the actual object is passed, rather
than a reference to that object. Assignment does not alias
Fixnum objects. There is effectively only one
Fixnum object instance for any given integer value, so, for
example, you cannot add a singleton method to a Fixnum.
Convert obj to a Fixnum. Works with
numeric parameters. Also works with Symbols, but this is deprecated.
static VALUE
rb_fix_induced_from(klass, x)
VALUE klass, x;
{
return rb_num2fix(x);
}
Returns fix modulo other. See
Numeric.divmod for more information.
static VALUE
fix_mod(x, y)
VALUE x, y;
{
if (FIXNUM_P(y)) {
long mod;
fixdivmod(FIX2LONG(x), FIX2LONG(y), 0, &mod);
return LONG2NUM(mod);
}
return rb_num_coerce_bin(x, y);
}
Bitwise AND.
static VALUE
fix_and(x, y)
VALUE x, y;
{
long val;
if (!FIXNUM_P(y = fix_coerce(y))) {
return rb_big_and(y, x);
}
val = FIX2LONG(x) & FIX2LONG(y);
return LONG2NUM(val);
}
Performs multiplication: the class of the resulting object depends on the
class of numeric and on the magnitude of the result.
static VALUE
fix_mul(x, y)
VALUE x, y;
{
if (FIXNUM_P(y)) {
#ifdef __HP_cc
/* avoids an optimization bug of HP aC++/ANSI C B3910B A.06.05 [Jul 25 2005] */
volatile
#endif
long a, b, c;
VALUE r;
a = FIX2LONG(x);
if (a == 0) return x;
b = FIX2LONG(y);
c = a * b;
r = LONG2FIX(c);
if (FIX2LONG(r) != c || c/a != b) {
r = rb_big_mul(rb_int2big(a), rb_int2big(b));
}
return r;
}
if (TYPE(y) == T_FLOAT) {
return rb_float_new((double)FIX2LONG(x) * RFLOAT(y)->value);
}
return rb_num_coerce_bin(x, y);
}
Raises fix to the other power, which may be
negative or fractional.
2 ** 3 #=> 8 2 ** -1 #=> 0.5 2 ** 0.5 #=> 1.4142135623731
static VALUE
fix_pow(x, y)
VALUE x, y;
{
static const double zero = 0.0;
long a = FIX2LONG(x);
if (FIXNUM_P(y)) {
long b;
b = FIX2LONG(y);
if (b == 0) return INT2FIX(1);
if (b == 1) return x;
a = FIX2LONG(x);
if (a == 0) {
if (b > 0) return INT2FIX(0);
return rb_float_new(1.0 / zero);
}
if (a == 1) return INT2FIX(1);
if (a == -1) {
if (b % 2 == 0)
return INT2FIX(1);
else
return INT2FIX(-1);
}
if (b > 0) {
return rb_big_pow(rb_int2big(a), y);
}
return rb_float_new(pow((double)a, (double)b));
}
switch (TYPE(y)) {
case T_BIGNUM:
if (a == 0) return INT2FIX(0);
if (a == 1) return INT2FIX(1);
if (a == -1) {
if (int_even_p(y)) return INT2FIX(1);
else return INT2FIX(-1);
}
x = rb_int2big(FIX2LONG(x));
return rb_big_pow(x, y);
case T_FLOAT:
if (a == 0) {
return rb_float_new(RFLOAT(y)->value < 0 ? (1.0 / zero) : 0.0);
}
if (a == 1) return rb_float_new(1.0);
return rb_float_new(pow((double)a, RFLOAT(y)->value));
default:
return rb_num_coerce_bin(x, y);
}
}
Performs addition: the class of the resulting object depends on the class
of numeric and on the magnitude of the result.
static VALUE
fix_plus(x, y)
VALUE x, y;
{
if (FIXNUM_P(y)) {
long a, b, c;
VALUE r;
a = FIX2LONG(x);
b = FIX2LONG(y);
c = a + b;
r = LONG2NUM(c);
return r;
}
if (TYPE(y) == T_FLOAT) {
return rb_float_new((double)FIX2LONG(x) + RFLOAT(y)->value);
}
return rb_num_coerce_bin(x, y);
}
Performs subtraction: the class of the resulting object depends on the
class of numeric and on the magnitude of the result.
static VALUE
fix_minus(x, y)
VALUE x, y;
{
if (FIXNUM_P(y)) {
long a, b, c;
VALUE r;
a = FIX2LONG(x);
b = FIX2LONG(y);
c = a - b;
r = LONG2NUM(c);
return r;
}
if (TYPE(y) == T_FLOAT) {
return rb_float_new((double)FIX2LONG(x) - RFLOAT(y)->value);
}
return rb_num_coerce_bin(x, y);
}
Negates fix (which might return a Bignum).
static VALUE
fix_uminus(num)
VALUE num;
{
return LONG2NUM(-FIX2LONG(num));
}
Performs division: the class of the resulting object depends on the class
of numeric and on the magnitude of the result.
static VALUE
fix_div(x, y)
VALUE x, y;
{
if (FIXNUM_P(y)) {
long div;
fixdivmod(FIX2LONG(x), FIX2LONG(y), &div, 0);
return LONG2NUM(div);
}
return rb_num_coerce_bin(x, y);
}
Returns true if the value of fix is less than
that of other.
static VALUE
fix_lt(x, y)
VALUE x, y;
{
if (FIXNUM_P(y)) {
long a = FIX2LONG(x), b = FIX2LONG(y);
if (a < b) return Qtrue;
return Qfalse;
}
else {
return rb_num_coerce_relop(x, y);
}
}
Shifts fix left count positions (right if count is negative).
static VALUE
rb_fix_lshift(x, y)
VALUE x, y;
{
long val, width;
val = NUM2LONG(x);
if (!FIXNUM_P(y))
return rb_big_lshift(rb_int2big(val), y);
width = FIX2LONG(y);
if (width < 0)
return fix_rshift(val, (unsigned long)-width);
return fix_lshift(val, width);
}
Returns true if the value of fix is less thanor
equal to that of other.
static VALUE
fix_le(x, y)
VALUE x, y;
{
if (FIXNUM_P(y)) {
long a = FIX2LONG(x), b = FIX2LONG(y);
if (a <= b) return Qtrue;
return Qfalse;
}
else {
return rb_num_coerce_relop(x, y);
}
}
Comparison—Returns -1, 0, or +1 depending on whether fix is less
than, equal to, or greater than numeric. This is the basis for the
tests in Comparable.
static VALUE
fix_cmp(x, y)
VALUE x, y;
{
if (x == y) return INT2FIX(0);
if (FIXNUM_P(y)) {
long a = FIX2LONG(x), b = FIX2LONG(y);
if (a > b) return INT2FIX(1);
return INT2FIX(-1);
}
else {
return rb_num_coerce_cmp(x, y);
}
}
Return true if fix equals other
numerically.
1 == 2 #=> false 1 == 1.0 #=> true
static VALUE
fix_equal(x, y)
VALUE x, y;
{
if (x == y) return Qtrue;
if (FIXNUM_P(y)) return Qfalse;
return num_equal(x, y);
}
Returns true if the value of fix is greater than
that of other.
static VALUE
fix_gt(x, y)
VALUE x, y;
{
if (FIXNUM_P(y)) {
long a = FIX2LONG(x), b = FIX2LONG(y);
if (a > b) return Qtrue;
return Qfalse;
}
else {
return rb_num_coerce_relop(x, y);
}
}
Returns true if the value of fix is greater than
or equal to that of other.
static VALUE
fix_ge(x, y)
VALUE x, y;
{
if (FIXNUM_P(y)) {
long a = FIX2LONG(x), b = FIX2LONG(y);
if (a >= b) return Qtrue;
return Qfalse;
}
else {
return rb_num_coerce_relop(x, y);
}
}
Shifts fix right count positions (left if count is negative).
static VALUE
rb_fix_rshift(x, y)
VALUE x, y;
{
long i, val;
val = FIX2LONG(x);
if (!FIXNUM_P(y))
return rb_big_rshift(rb_int2big(val), y);
i = FIX2LONG(y);
if (i == 0) return x;
if (i < 0)
return fix_lshift(val, (unsigned long)-i);
return fix_rshift(val, i);
}
Bit Reference—Returns the nth bit in the binary representation of fix, where fix is the least significant bit.
a = 0b11001100101010 30.downto(0) do |n| print a[n] end
produces:
0000000000000000011001100101010
static VALUE
fix_aref(fix, idx)
VALUE fix, idx;
{
long val = FIX2LONG(fix);
long i;
if (!FIXNUM_P(idx = fix_coerce(idx))) {
idx = rb_big_norm(idx);
if (!FIXNUM_P(idx)) {
if (!RBIGNUM(idx)->sign || val >= 0)
return INT2FIX(0);
return INT2FIX(1);
}
}
i = FIX2LONG(idx);
if (i < 0) return INT2FIX(0);
if (sizeof(VALUE)*CHAR_BIT-1 < i) {
if (val < 0) return INT2FIX(1);
return INT2FIX(0);
}
if (val & (1L<<i))
return INT2FIX(1);
return INT2FIX(0);
}
Bitwise EXCLUSIVE OR.
static VALUE
fix_xor(x, y)
VALUE x, y;
{
long val;
if (!FIXNUM_P(y = fix_coerce(y))) {
return rb_big_xor(y, x);
}
val = FIX2LONG(x) ^ FIX2LONG(y);
return LONG2NUM(val);
}
Returns the absolute value of fix.
-12345.abs #=> 12345 12345.abs #=> 12345
static VALUE
fix_abs(fix)
VALUE fix;
{
long i = FIX2LONG(fix);
if (i < 0) i = -i;
return LONG2NUM(i);
}
Performs division: the class of the resulting object depends on the class
of numeric and on the magnitude of the result.
static VALUE
fix_div(x, y)
VALUE x, y;
{
if (FIXNUM_P(y)) {
long div;
fixdivmod(FIX2LONG(x), FIX2LONG(y), &div, 0);
return LONG2NUM(div);
}
return rb_num_coerce_bin(x, y);
}
See Numeric#divmod.
static VALUE
fix_divmod(x, y)
VALUE x, y;
{
if (FIXNUM_P(y)) {
long div, mod;
fixdivmod(FIX2LONG(x), FIX2LONG(y), &div, &mod);
return rb_assoc_new(LONG2NUM(div), LONG2NUM(mod));
}
return rb_num_coerce_bin(x, y);
}
Returns the name of the object whose symbol id is fix. If there is
no symbol in the symbol table with this value, returns nil.
id2name has nothing to do with the Object.id
method. See also Fixnum#to_sym, String#intern,
and class Symbol.
symbol = :@inst_var #=> :@inst_var id = symbol.to_i #=> 9818 id.id2name #=> "@inst_var"
static VALUE
fix_id2name(fix)
VALUE fix;
{
char *name = rb_id2name(FIX2UINT(fix));
if (name) return rb_str_new2(name);
return Qnil;
}
Returns fix modulo other. See
Numeric.divmod for more information.
static VALUE
fix_mod(x, y)
VALUE x, y;
{
if (FIXNUM_P(y)) {
long mod;
fixdivmod(FIX2LONG(x), FIX2LONG(y), 0, &mod);
return LONG2NUM(mod);
}
return rb_num_coerce_bin(x, y);
}
Returns the floating point result of dividing fix by numeric.
654321.quo(13731) #=> 47.6528293642124 654321.quo(13731.24) #=> 47.6519964693647
static VALUE
fix_quo(x, y)
VALUE x, y;
{
if (FIXNUM_P(y)) {
return rb_float_new((double)FIX2LONG(x) / (double)FIX2LONG(y));
}
return rb_num_coerce_bin(x, y);
}
Returns the number of bytes in the machine representation of a
Fixnum.
1.size #=> 4 -1.size #=> 4 2147483647.size #=> 4
static VALUE
fix_size(fix)
VALUE fix;
{
return INT2FIX(sizeof(long));
}
Converts fix to a Float.
static VALUE
fix_to_f(num)
VALUE num;
{
double val;
val = (double)FIX2LONG(num);
return rb_float_new(val);
}
Returns a string containing the representation of fix radix base (between 2 and 36).
12345.to_s #=> "12345" 12345.to_s(2) #=> "11000000111001" 12345.to_s(8) #=> "30071" 12345.to_s(10) #=> "12345" 12345.to_s(16) #=> "3039" 12345.to_s(36) #=> "9ix"
static VALUE
fix_to_s(argc, argv, x)
int argc;
VALUE *argv;
VALUE x;
{
VALUE b;
int base;
rb_scan_args(argc, argv, "01", &b);
if (argc == 0) base = 10;
else base = NUM2INT(b);
return rb_fix2str(x, base);
}
Returns the symbol whose integer value is fix. See also
Fixnum#id2name.
fred = :fred.to_i fred.id2name #=> "fred" fred.to_sym #=> :fred
static VALUE
fix_to_sym(fix)
VALUE fix;
{
ID id = FIX2UINT(fix);
if (rb_id2name(id)) {
return ID2SYM(id);
}
return Qnil;
}
Returns true if fix is zero.
static VALUE
fix_zero_p(num)
VALUE num;
{
if (FIX2LONG(num) == 0) {
return Qtrue;
}
return Qfalse;
}