In Files

  • complex.c
  • numeric.c
  • numeric.rb
  • rational.c

Files

Class/Module Index [+]

Quicksearch

Float

A Float object represents a sometimes-inexact real number using the native architecture's double-precision floating point representation.

Floating point has a different arithmetic and is an inexact number. So you should know its esoteric system. See following:

You can create a Float object explicitly with:

You can convert certain objects to Floats with:

What's Here

First, what's elsewhere. Class Float:

Here, class Float provides methods for:

Querying

  • finite?

    Returns whether self is finite.

  • hash

    Returns the integer hash code for self.

  • infinite?

    Returns whether self is infinite.

  • nan?

    Returns whether self is a NaN (not-a-number).

Comparing

  • <

    Returns whether self is less than the given value.

  • <=

    Returns whether self is less than or equal to the given value.

  • <=>

    Returns a number indicating whether self is less than, equal to, or greater than the given value.

  • == (aliased as === and eql>)

    Returns whether self is equal to the given value.

  • >

    Returns whether self is greater than the given value.

  • >=

    Returns whether self is greater than or equal to the given value.

Converting

  • % (aliased as modulo)

    Returns self modulo the given value.

  • *

    Returns the product of self and the given value.

  • **

    Returns the value of self raised to the power of the given value.

  • +

    Returns the sum of self and the given value.

  • -

    Returns the difference of self and the given value.

  • /

    Returns the quotient of self and the given value.

  • ceil

    Returns the smallest number greater than or equal to self.

  • coerce

    Returns a 2-element array containing the given value converted to a Float and self

  • divmod

    Returns a 2-element array containing the quotient and remainder results of dividing self by the given value.

  • fdiv

    Returns the Float result of dividing self by the given value.

  • floor

    Returns the greatest number smaller than or equal to self.

  • next_float

    Returns the next-larger representable Float.

  • prev_float

    Returns the next-smaller representable Float.

  • quo

    Returns the quotient from dividing self by the given value.

  • round

    Returns self rounded to the nearest value, to a given precision.

  • to_i (aliased as to_int)

    Returns self truncated to an Integer.

  • to_s (aliased as inspect)

    Returns a string containing the place-value representation of self in the given radix.

  • truncate

    Returns self truncated to a given precision.

Constants

DIG

The minimum number of significant decimal digits in a double-precision floating point.

Usually defaults to 15.

EPSILON

The difference between 1 and the smallest double-precision floating point number greater than 1.

Usually defaults to 2.2204460492503131e-16.

INFINITY

An expression representing positive infinity.

MANT_DIG

The number of base digits for the double data type.

Usually defaults to 53.

MAX

The largest possible integer in a double-precision floating point number.

Usually defaults to 1.7976931348623157e+308.

MAX_10_EXP

The largest positive exponent in a double-precision floating point where 10 raised to this power minus 1.

Usually defaults to 308.

MAX_EXP

The largest possible exponent value in a double-precision floating point.

Usually defaults to 1024.

MIN

The smallest positive normalized number in a double-precision floating point.

Usually defaults to 2.2250738585072014e-308.

If the platform supports denormalized numbers, there are numbers between zero and Float::MIN. 0.0.next_float returns the smallest positive floating point number including denormalized numbers.

MIN_10_EXP

The smallest negative exponent in a double-precision floating point where 10 raised to this power minus 1.

Usually defaults to -307.

MIN_EXP

The smallest possible exponent value in a double-precision floating point.

Usually defaults to -1021.

NAN

An expression representing a value which is “not a number”.

RADIX

The base of the floating point, or number of unique digits used to represent the number.

Usually defaults to 2 on most systems, which would represent a base-10 decimal.

Public Instance Methods

self % other → float click to toggle source

Returns self modulo other as a float.

For float f and real number r, these expressions are equivalent:

f % r
f-r*(f/r).floor
f.divmod(r)[1]

See Numeric#divmod.

Examples:

10.0 % 2              # => 0.0
10.0 % 3              # => 1.0
10.0 % 4              # => 2.0

10.0 % -2             # => 0.0
10.0 % -3             # => -2.0
10.0 % -4             # => -2.0

10.0 % 4.0            # => 2.0
10.0 % Rational(4, 1) # => 2.0

Float#modulo is an alias for Float#%.

 
               static VALUE
flo_mod(VALUE x, VALUE y)
{
    double fy;

    if (FIXNUM_P(y)) {
        fy = (double)FIX2LONG(y);
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
        fy = rb_big2dbl(y);
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        fy = RFLOAT_VALUE(y);
    }
    else {
        return rb_num_coerce_bin(x, y, '%');
    }
    return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}
            
self * other → numeric click to toggle source

Returns a new Float which is the product of self and other:

f = 3.14
f * 2              # => 6.28
f * 2.0            # => 6.28
f * Rational(1, 2) # => 1.57
f * Complex(2, 0)  # => (6.28+0.0i)
 
               VALUE
rb_float_mul(VALUE x, VALUE y)
{
    if (FIXNUM_P(y)) {
        return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
        return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
    }
    else {
        return rb_num_coerce_bin(x, y, '*');
    }
}
            
self ** other → numeric click to toggle source

Raises self to the power of other:

f = 3.14
f ** 2              # => 9.8596
f ** -2             # => 0.1014239928597509
f ** 2.1            # => 11.054834900588839
f ** Rational(2, 1) # => 9.8596
f ** Complex(2, 0)  # => (9.8596+0i)
 
               VALUE
rb_float_pow(VALUE x, VALUE y)
{
    double dx, dy;
    if (y == INT2FIX(2)) {
        dx = RFLOAT_VALUE(x);
        return DBL2NUM(dx * dx);
    }
    else if (FIXNUM_P(y)) {
        dx = RFLOAT_VALUE(x);
        dy = (double)FIX2LONG(y);
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
        dx = RFLOAT_VALUE(x);
        dy = rb_big2dbl(y);
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        dx = RFLOAT_VALUE(x);
        dy = RFLOAT_VALUE(y);
        if (dx < 0 && dy != round(dy))
            return rb_dbl_complex_new_polar_pi(pow(-dx, dy), dy);
    }
    else {
        return rb_num_coerce_bin(x, y, idPow);
    }
    return DBL2NUM(pow(dx, dy));
}
            
self + other → numeric click to toggle source

Returns a new Float which is the sum of self and other:

f = 3.14
f + 1                 # => 4.140000000000001
f + 1.0               # => 4.140000000000001
f + Rational(1, 1)    # => 4.140000000000001
f + Complex(1, 0)     # => (4.140000000000001+0i)
 
               VALUE
rb_float_plus(VALUE x, VALUE y)
{
    if (FIXNUM_P(y)) {
        return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
        return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
    }
    else {
        return rb_num_coerce_bin(x, y, '+');
    }
}
            
self - other → numeric click to toggle source

Returns a new Float which is the difference of self and other:

f = 3.14
f - 1                 # => 2.14
f - 1.0               # => 2.14
f - Rational(1, 1)    # => 2.14
f - Complex(1, 0)     # => (2.14+0i)
 
               VALUE
rb_float_minus(VALUE x, VALUE y)
{
    if (FIXNUM_P(y)) {
        return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
        return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
    }
    else {
        return rb_num_coerce_bin(x, y, '-');
    }
}
            
-float → float click to toggle source

Returns float, negated.

 
               # File numeric.rb, line 294
def -@
  Primitive.attr! 'inline'
  Primitive.cexpr! 'rb_float_uminus(self)'
end
            
self / other → numeric click to toggle source

Returns a new Float which is the result of dividing self by other:

f = 3.14
f / 2              # => 1.57
f / 2.0            # => 1.57
f / Rational(2, 1) # => 1.57
f / Complex(2, 0)  # => (1.57+0.0i)
 
               VALUE
rb_float_div(VALUE x, VALUE y)
{
    double num = RFLOAT_VALUE(x);
    double den;
    double ret;

    if (FIXNUM_P(y)) {
        den = FIX2LONG(y);
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
        den = rb_big2dbl(y);
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        den = RFLOAT_VALUE(y);
    }
    else {
        return rb_num_coerce_bin(x, y, '/');
    }

    ret = double_div_double(num, den);
    return DBL2NUM(ret);
}
            
self < other → true or false click to toggle source

Returns true if self is numerically less than other:

2.0 < 3              # => true
2.0 < 3.0            # => true
2.0 < Rational(3, 1) # => true
2.0 < 2.0            # => false

Float::NAN < Float::NAN returns an implementation-dependent value.

 
               static VALUE
flo_lt(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_INTEGER_TYPE_P(y)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return RBOOL(-FIX2LONG(rel) < 0);
        return Qfalse;
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
        if (isnan(b)) return Qfalse;
#endif
    }
    else {
        return rb_num_coerce_relop(x, y, '<');
    }
#if MSC_VERSION_BEFORE(1300)
    if (isnan(a)) return Qfalse;
#endif
    return RBOOL(a < b);
}
            
self <= other → true or false click to toggle source

Returns true if self is numerically less than or equal to other:

2.0 <= 3              # => true
2.0 <= 3.0            # => true
2.0 <= Rational(3, 1) # => true
2.0 <= 2.0            # => true
2.0 <= 1.0            # => false

Float::NAN <= Float::NAN returns an implementation-dependent value.

 
               static VALUE
flo_le(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_INTEGER_TYPE_P(y)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return RBOOL(-FIX2LONG(rel) <= 0);
        return Qfalse;
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
        if (isnan(b)) return Qfalse;
#endif
    }
    else {
        return rb_num_coerce_relop(x, y, idLE);
    }
#if MSC_VERSION_BEFORE(1300)
    if (isnan(a)) return Qfalse;
#endif
    return RBOOL(a <= b);
}
            
self <=> other → -1, 0, +1, or nil click to toggle source

Returns a value that depends on the numeric relation between self and other:

  • -1, if self is less than other.

  • 0, if self is equal to other.

  • 1, if self is greater than other.

  • nil, if the two values are incommensurate.

Examples:

2.0 <=> 2              # => 0
2.0 <=> 2.0            # => 0
2.0 <=> Rational(2, 1) # => 0
2.0 <=> Complex(2, 0)  # => 0
2.0 <=> 1.9            # => 1
2.0 <=> 2.1            # => -1
2.0 <=> 'foo'          # => nil

This is the basis for the tests in the Comparable module.

Float::NAN <=> Float::NAN returns an implementation-dependent value.

 
               static VALUE
flo_cmp(VALUE x, VALUE y)
{
    double a, b;
    VALUE i;

    a = RFLOAT_VALUE(x);
    if (isnan(a)) return Qnil;
    if (RB_INTEGER_TYPE_P(y)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return LONG2FIX(-FIX2LONG(rel));
        return rel;
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        b = RFLOAT_VALUE(y);
    }
    else {
        if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) {
            if (RTEST(i)) {
                int j = rb_cmpint(i, x, y);
                j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
                return INT2FIX(j);
            }
            if (a > 0.0) return INT2FIX(1);
            return INT2FIX(-1);
        }
        return rb_num_coerce_cmp(x, y, id_cmp);
    }
    return rb_dbl_cmp(a, b);
}
            
self == other → true or false click to toggle source

Returns true if other has the same value as self, false otherwise:

2.0 == 2              # => true
2.0 == 2.0            # => true
2.0 == Rational(2, 1) # => true
2.0 == Complex(2, 0)  # => true

Float::NAN == Float::NAN returns an implementation-dependent value.

Related: Float#eql? (requires other to be a Float).

 
               MJIT_FUNC_EXPORTED VALUE
rb_float_equal(VALUE x, VALUE y)
{
    volatile double a, b;

    if (RB_INTEGER_TYPE_P(y)) {
        return rb_integer_float_eq(y, x);
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
        if (isnan(b)) return Qfalse;
#endif
    }
    else {
        return num_equal(x, y);
    }
    a = RFLOAT_VALUE(x);
#if MSC_VERSION_BEFORE(1300)
    if (isnan(a)) return Qfalse;
#endif
    return RBOOL(a == b);
}
            
self == other → true or false click to toggle source

Returns true if other has the same value as self, false otherwise:

2.0 == 2              # => true
2.0 == 2.0            # => true
2.0 == Rational(2, 1) # => true
2.0 == Complex(2, 0)  # => true

Float::NAN == Float::NAN returns an implementation-dependent value.

Related: Float#eql? (requires other to be a Float).

 
               MJIT_FUNC_EXPORTED VALUE
rb_float_equal(VALUE x, VALUE y)
{
    volatile double a, b;

    if (RB_INTEGER_TYPE_P(y)) {
        return rb_integer_float_eq(y, x);
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
        if (isnan(b)) return Qfalse;
#endif
    }
    else {
        return num_equal(x, y);
    }
    a = RFLOAT_VALUE(x);
#if MSC_VERSION_BEFORE(1300)
    if (isnan(a)) return Qfalse;
#endif
    return RBOOL(a == b);
}
            
self > other → true or false click to toggle source

Returns true if self is numerically greater than other:

2.0 > 1              # => true
2.0 > 1.0            # => true
2.0 > Rational(1, 2) # => true
2.0 > 2.0            # => false

Float::NAN > Float::NAN returns an implementation-dependent value.

 
               VALUE
rb_float_gt(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_INTEGER_TYPE_P(y)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return RBOOL(-FIX2LONG(rel) > 0);
        return Qfalse;
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
        if (isnan(b)) return Qfalse;
#endif
    }
    else {
        return rb_num_coerce_relop(x, y, '>');
    }
#if MSC_VERSION_BEFORE(1300)
    if (isnan(a)) return Qfalse;
#endif
    return RBOOL(a > b);
}
            
self >= other → true or false click to toggle source

Returns true if self is numerically greater than or equal to other:

2.0 >= 1              # => true
2.0 >= 1.0            # => true
2.0 >= Rational(1, 2) # => true
2.0 >= 2.0            # => true
2.0 >= 2.1            # => false

Float::NAN >= Float::NAN returns an implementation-dependent value.

 
               static VALUE
flo_ge(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_TYPE_P(y, T_FIXNUM) || RB_BIGNUM_TYPE_P(y)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return RBOOL(-FIX2LONG(rel) >= 0);
        return Qfalse;
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
        if (isnan(b)) return Qfalse;
#endif
    }
    else {
        return rb_num_coerce_relop(x, y, idGE);
    }
#if MSC_VERSION_BEFORE(1300)
    if (isnan(a)) return Qfalse;
#endif
    return RBOOL(a >= b);
}
            
abs → float click to toggle source
magnitude → float

Returns the absolute value of float.

(-34.56).abs   #=> 34.56
-34.56.abs     #=> 34.56
34.56.abs      #=> 34.56

Float#magnitude is an alias for Float#abs.

 
               # File numeric.rb, line 278
def abs
  Primitive.attr! 'inline'
  Primitive.cexpr! 'rb_float_abs(self)'
end
            
angle → 0 or float click to toggle source

Returns 0 if the value is positive, pi otherwise.

 
               static VALUE
float_arg(VALUE self)
{
    if (isnan(RFLOAT_VALUE(self)))
        return self;
    if (f_tpositive_p(self))
        return INT2FIX(0);
    return rb_const_get(rb_mMath, id_PI);
}
            
arg → 0 or float click to toggle source

Returns 0 if the value is positive, pi otherwise.

 
               static VALUE
float_arg(VALUE self)
{
    if (isnan(RFLOAT_VALUE(self)))
        return self;
    if (f_tpositive_p(self))
        return INT2FIX(0);
    return rb_const_get(rb_mMath, id_PI);
}
            
ceil(ndigits = 0) → float or integer click to toggle source

Returns the smallest number greater than or equal to self with a precision of ndigits decimal digits.

When ndigits is positive, returns a float with ndigits digits after the decimal point (as available):

f = 12345.6789
f.ceil(1) # => 12345.7
f.ceil(3) # => 12345.679
f = -12345.6789
f.ceil(1) # => -12345.6
f.ceil(3) # => -12345.678

When ndigits is non-positive, returns an integer with at least ndigits.abs trailing zeros:

f = 12345.6789
f.ceil(0)  # => 12346
f.ceil(-3) # => 13000
f = -12345.6789
f.ceil(0)  # => -12345
f.ceil(-3) # => -12000

Note that the limited precision of floating-point arithmetic may lead to surprising results:

(2.1 / 0.7).ceil  #=> 4 (!)

Related: Float#floor.

 
               static VALUE
flo_ceil(int argc, VALUE *argv, VALUE num)
{
    int ndigits = flo_ndigits(argc, argv);
    return rb_float_ceil(num, ndigits);
}
            
coerce(other) → array click to toggle source

Returns a 2-element array containing other converted to a Float and self:

f = 3.14                 # => 3.14
f.coerce(2)              # => [2.0, 3.14]
f.coerce(2.0)            # => [2.0, 3.14]
f.coerce(Rational(1, 2)) # => [0.5, 3.14]
f.coerce(Complex(1, 0))  # => [1.0, 3.14]

Raises an exception if a type conversion fails.

 
               static VALUE
flo_coerce(VALUE x, VALUE y)
{
    return rb_assoc_new(rb_Float(y), x);
}
            
denominator → integer click to toggle source

Returns the denominator (always positive). The result is machine dependent.

See also Float#numerator.

 
               VALUE
rb_float_denominator(VALUE self)
{
    double d = RFLOAT_VALUE(self);
    VALUE r;
    if (!isfinite(d))
        return INT2FIX(1);
    r = float_to_r(self);
    return nurat_denominator(r);
}
            
divmod(other) → array click to toggle source

Returns a 2-element array [q, r], where

q = (self/other).floor      # Quotient
r = self % other            # Remainder

Examples:

11.0.divmod(4)              # => [2, 3.0]
11.0.divmod(-4)             # => [-3, -1.0]
-11.0.divmod(4)             # => [-3, 1.0]
-11.0.divmod(-4)            # => [2, -3.0]

12.0.divmod(4)              # => [3, 0.0]
12.0.divmod(-4)             # => [-3, 0.0]
-12.0.divmod(4)             # => [-3, -0.0]
-12.0.divmod(-4)            # => [3, -0.0]

13.0.divmod(4.0)            # => [3, 1.0]
13.0.divmod(Rational(4, 1)) # => [3, 1.0]
 
               static VALUE
flo_divmod(VALUE x, VALUE y)
{
    double fy, div, mod;
    volatile VALUE a, b;

    if (FIXNUM_P(y)) {
        fy = (double)FIX2LONG(y);
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
        fy = rb_big2dbl(y);
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        fy = RFLOAT_VALUE(y);
    }
    else {
        return rb_num_coerce_bin(x, y, id_divmod);
    }
    flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
    a = dbl2ival(div);
    b = DBL2NUM(mod);
    return rb_assoc_new(a, b);
}
            
eql?(other) → true or false click to toggle source

Returns true if other is a Float with the same value as self, false otherwise:

2.0.eql?(2.0)            # => true
2.0.eql?(1.0)            # => false
2.0.eql?(1)              # => false
2.0.eql?(Rational(2, 1)) # => false
2.0.eql?(Complex(2, 0))  # => false

Float::NAN.eql?(Float::NAN) returns an implementation-dependent value.

Related: Float#== (performs type conversions).

 
               MJIT_FUNC_EXPORTED VALUE
rb_float_eql(VALUE x, VALUE y)
{
    if (RB_FLOAT_TYPE_P(y)) {
        double a = RFLOAT_VALUE(x);
        double b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
        if (isnan(a) || isnan(b)) return Qfalse;
#endif
    return RBOOL(a == b);
    }
    return Qfalse;
}
            
quo(other) → numeric click to toggle source

Returns the quotient from dividing self by other:

f = 3.14
f.quo(2)              # => 1.57
f.quo(-2)             # => -1.57
f.quo(Rational(2, 1)) # => 1.57
f.quo(Complex(2, 0))  # => (1.57+0.0i)

Float#fdiv is an alias for Float#quo.

 
               static VALUE
flo_quo(VALUE x, VALUE y)
{
    return num_funcall1(x, '/', y);
}
            
finite? → true or false click to toggle source

Returns true if self is not Infinity, -Infinity, or Nan, false otherwise:

f = 2.0      # => 2.0
f.finite?    # => true
f = 1.0/0.0  # => Infinity
f.finite?    # => false
f = -1.0/0.0 # => -Infinity
f.finite?    # => false
f = 0.0/0.0  # => NaN
f.finite?    # => false
 
               VALUE
rb_flo_is_finite_p(VALUE num)
{
    double value = RFLOAT_VALUE(num);

    return RBOOL(isfinite(value));
}
            
floor(ndigits = 0) → float or integer click to toggle source

Returns the largest number less than or equal to self with a precision of ndigits decimal digits.

When ndigits is positive, returns a float with ndigits digits after the decimal point (as available):

f = 12345.6789
f.floor(1) # => 12345.6
f.floor(3) # => 12345.678
f = -12345.6789
f.floor(1) # => -12345.7
f.floor(3) # => -12345.679

When ndigits is non-positive, returns an integer with at least ndigits.abs trailing zeros:

f = 12345.6789
f.floor(0)  # => 12345
f.floor(-3) # => 12000
f = -12345.6789
f.floor(0)  # => -12346
f.floor(-3) # => -13000

Note that the limited precision of floating-point arithmetic may lead to surprising results:

(0.3 / 0.1).floor  #=> 2 (!)

Related: Float#ceil.

 
               static VALUE
flo_floor(int argc, VALUE *argv, VALUE num)
{
    int ndigits = flo_ndigits(argc, argv);
    return rb_float_floor(num, ndigits);
}
            
hash → integer click to toggle source

Returns the integer hash value for self.

See also Object#hash.

 
               static VALUE
flo_hash(VALUE num)
{
    return rb_dbl_hash(RFLOAT_VALUE(num));
}
            
infinite? → -1, 1, or nil click to toggle source

Returns:

  • 1, if self is Infinity.

  • -1 if self is -Infinity.

  • nil, otherwise.

Examples:

f = 1.0/0.0  # => Infinity
f.infinite?  # => 1
f = -1.0/0.0 # => -Infinity
f.infinite?  # => -1
f = 1.0      # => 1.0
f.infinite?  # => nil
f = 0.0/0.0  # => NaN
f.infinite?  # => nil
 
               VALUE
rb_flo_is_infinite_p(VALUE num)
{
    double value = RFLOAT_VALUE(num);

    if (isinf(value)) {
        return INT2FIX( value < 0 ? -1 : 1 );
    }

    return Qnil;
}
            
inspect() click to toggle source
Alias for: to_s
magnitude() click to toggle source
 
               # File numeric.rb, line 283
def magnitude
  Primitive.attr! 'inline'
  Primitive.cexpr! 'rb_float_abs(self)'
end
            
self % other → float click to toggle source

Returns self modulo other as a float.

For float f and real number r, these expressions are equivalent:

f % r
f-r*(f/r).floor
f.divmod(r)[1]

See Numeric#divmod.

Examples:

10.0 % 2              # => 0.0
10.0 % 3              # => 1.0
10.0 % 4              # => 2.0

10.0 % -2             # => 0.0
10.0 % -3             # => -2.0
10.0 % -4             # => -2.0

10.0 % 4.0            # => 2.0
10.0 % Rational(4, 1) # => 2.0

Float#modulo is an alias for Float#%.

 
               static VALUE
flo_mod(VALUE x, VALUE y)
{
    double fy;

    if (FIXNUM_P(y)) {
        fy = (double)FIX2LONG(y);
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
        fy = rb_big2dbl(y);
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        fy = RFLOAT_VALUE(y);
    }
    else {
        return rb_num_coerce_bin(x, y, '%');
    }
    return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}
            
nan? → true or false click to toggle source

Returns true if self is a NaN, false otherwise.

f = -1.0     #=> -1.0
f.nan?       #=> false
f = 0.0/0.0  #=> NaN
f.nan?       #=> true
 
               static VALUE
flo_is_nan_p(VALUE num)
{
    double value = RFLOAT_VALUE(num);

    return RBOOL(isnan(value));
}
            
negative? → true or false click to toggle source

Returns true if float is less than 0.

 
               # File numeric.rb, line 327
def negative?
  Primitive.attr! 'inline'
  Primitive.cexpr! 'RBOOL(RFLOAT_VALUE(self) < 0.0)'
end
            
next_float → float click to toggle source

Returns the next-larger representable Float.

These examples show the internally stored values (64-bit hexadecimal) for each Float f and for the corresponding f.next_float:

f = 0.0      # 0x0000000000000000
f.next_float # 0x0000000000000001

f = 0.01     # 0x3f847ae147ae147b
f.next_float # 0x3f847ae147ae147c

In the remaining examples here, the output is shown in the usual way (result to_s):

0.01.next_float    # => 0.010000000000000002
1.0.next_float     # => 1.0000000000000002
100.0.next_float   # => 100.00000000000001

f = 0.01
(0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.next_float }

Output:

 0 0x1.47ae147ae147bp-7 0.01
 1 0x1.47ae147ae147cp-7 0.010000000000000002
 2 0x1.47ae147ae147dp-7 0.010000000000000004
 3 0x1.47ae147ae147ep-7 0.010000000000000005

f = 0.0; 100.times { f += 0.1 }
f                           # => 9.99999999999998       # should be 10.0 in the ideal world.
10-f                        # => 1.9539925233402755e-14 # the floating point error.
10.0.next_float-10          # => 1.7763568394002505e-15 # 1 ulp (unit in the last place).
(10-f)/(10.0.next_float-10) # => 11.0                   # the error is 11 ulp.
(10-f)/(10*Float::EPSILON)  # => 8.8                    # approximation of the above.
"%a" % 10                   # => "0x1.4p+3"
"%a" % f                    # => "0x1.3fffffffffff5p+3" # the last hex digit is 5.  16 - 5 = 11 ulp.

Related: Float#prev_float

 
               static VALUE
flo_next_float(VALUE vx)
{
    return flo_nextafter(vx, HUGE_VAL);
}
            
numerator → integer click to toggle source

Returns the numerator. The result is machine dependent.

n = 0.3.numerator    #=> 5404319552844595
d = 0.3.denominator  #=> 18014398509481984
n.fdiv(d)            #=> 0.3

See also Float#denominator.

 
               VALUE
rb_float_numerator(VALUE self)
{
    double d = RFLOAT_VALUE(self);
    VALUE r;
    if (!isfinite(d))
        return self;
    r = float_to_r(self);
    return nurat_numerator(r);
}
            
phase → 0 or float click to toggle source

Returns 0 if the value is positive, pi otherwise.

 
               static VALUE
float_arg(VALUE self)
{
    if (isnan(RFLOAT_VALUE(self)))
        return self;
    if (f_tpositive_p(self))
        return INT2FIX(0);
    return rb_const_get(rb_mMath, id_PI);
}
            
positive? → true or false click to toggle source

Returns true if float is greater than 0.

 
               # File numeric.rb, line 316
def positive?
  Primitive.attr! 'inline'
  Primitive.cexpr! 'RBOOL(RFLOAT_VALUE(self) > 0.0)'
end
            
prev_float → float click to toggle source

Returns the next-smaller representable Float.

These examples show the internally stored values (64-bit hexadecimal) for each Float f and for the corresponding f.pev_float:

f = 5e-324   # 0x0000000000000001
f.prev_float # 0x0000000000000000

f = 0.01     # 0x3f847ae147ae147b
f.prev_float # 0x3f847ae147ae147a

In the remaining examples here, the output is shown in the usual way (result to_s):

0.01.prev_float   # => 0.009999999999999998
1.0.prev_float    # => 0.9999999999999999
100.0.prev_float  # => 99.99999999999999

f = 0.01
(0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.prev_float }

Output:

0 0x1.47ae147ae147bp-7 0.01
1 0x1.47ae147ae147ap-7 0.009999999999999998
2 0x1.47ae147ae1479p-7 0.009999999999999997
3 0x1.47ae147ae1478p-7 0.009999999999999995

Related: Float#next_float.

 
               static VALUE
flo_prev_float(VALUE vx)
{
    return flo_nextafter(vx, -HUGE_VAL);
}
            
quo(other) → numeric click to toggle source

Returns the quotient from dividing self by other:

f = 3.14
f.quo(2)              # => 1.57
f.quo(-2)             # => -1.57
f.quo(Rational(2, 1)) # => 1.57
f.quo(Complex(2, 0))  # => (1.57+0.0i)

Float#fdiv is an alias for Float#quo.

 
               static VALUE
flo_quo(VALUE x, VALUE y)
{
    return num_funcall1(x, '/', y);
}
            
rationalize([eps]) → rational click to toggle source

Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|). If the optional argument eps is not given, it will be chosen automatically.

0.3.rationalize          #=> (3/10)
1.333.rationalize        #=> (1333/1000)
1.333.rationalize(0.01)  #=> (4/3)

See also Float#to_r.

 
               static VALUE
float_rationalize(int argc, VALUE *argv, VALUE self)
{
    double d = RFLOAT_VALUE(self);
    VALUE rat;
    int neg = d < 0.0;
    if (neg) self = DBL2NUM(-d);

    if (rb_check_arity(argc, 0, 1)) {
        rat = rb_flt_rationalize_with_prec(self, argv[0]);
    }
    else {
        rat = rb_flt_rationalize(self);
    }
    if (neg) RATIONAL_SET_NUM(rat, rb_int_uminus(RRATIONAL(rat)->num));
    return rat;
}
            
round(ndigits = 0, half: :up]) → integer or float click to toggle source

Returns self rounded to the nearest value with a precision of ndigits decimal digits.

When ndigits is non-negative, returns a float with ndigits after the decimal point (as available):

f = 12345.6789
f.round(1) # => 12345.7
f.round(3) # => 12345.679
f = -12345.6789
f.round(1) # => -12345.7
f.round(3) # => -12345.679

When ndigits is negative, returns an integer with at least ndigits.abs trailing zeros:

f = 12345.6789
f.round(0)  # => 12346
f.round(-3) # => 12000
f = -12345.6789
f.round(0)  # => -12346
f.round(-3) # => -12000

If keyword argument half is given, and self is equidistant from the two candidate values, the rounding is according to the given half value:

  • :up or nil: round away from zero:

    2.5.round(half: :up)      # => 3
    3.5.round(half: :up)      # => 4
    (-2.5).round(half: :up)   # => -3
    
  • :down: round toward zero:

    2.5.round(half: :down)    # => 2
    3.5.round(half: :down)    # => 3
    (-2.5).round(half: :down) # => -2
    
  • :even: round toward the candidate whose last nonzero digit is even:

    2.5.round(half: :even)    # => 2
    3.5.round(half: :even)    # => 4
    (-2.5).round(half: :even) # => -2
    

Raises and exception if the value for half is invalid.

Related: Float#truncate.

 
               static VALUE
flo_round(int argc, VALUE *argv, VALUE num)
{
    double number, f, x;
    VALUE nd, opt;
    int ndigits = 0;
    enum ruby_num_rounding_mode mode;

    if (rb_scan_args(argc, argv, "01:", &nd, &opt)) {
        ndigits = NUM2INT(nd);
    }
    mode = rb_num_get_rounding_option(opt);
    number = RFLOAT_VALUE(num);
    if (number == 0.0) {
        return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
    }
    if (ndigits < 0) {
        return rb_int_round(flo_to_i(num), ndigits, mode);
    }
    if (ndigits == 0) {
        x = ROUND_CALL(mode, round, (number, 1.0));
        return dbl2ival(x);
    }
    if (isfinite(number)) {
        int binexp;
        frexp(number, &binexp);
        if (float_round_overflow(ndigits, binexp)) return num;
        if (float_round_underflow(ndigits, binexp)) return DBL2NUM(0);
        if (ndigits > 14) {
            /* In this case, pow(10, ndigits) may not be accurate. */
            return rb_flo_round_by_rational(argc, argv, num);
        }
        f = pow(10, ndigits);
        x = ROUND_CALL(mode, round, (number, f));
        return DBL2NUM(x / f);
    }
    return num;
}
            
to_f → self click to toggle source

Since float is already a Float, returns self.

 
               # File numeric.rb, line 261
def to_f
  return self
end
            
to_i → integer click to toggle source

Returns self truncated to an Integer.

1.2.to_i    # => 1
(-1.2).to_i # => -1

Note that the limited precision of floating-point arithmetic may lead to surprising results:

(0.3 / 0.1).to_i  # => 2 (!)

Float#to_int is an alias for Float#to_i.

 
               static VALUE
flo_to_i(VALUE num)
{
    double f = RFLOAT_VALUE(num);

    if (f > 0.0) f = floor(f);
    if (f < 0.0) f = ceil(f);

    return dbl2ival(f);
}
            
to_i → integer click to toggle source

Returns self truncated to an Integer.

1.2.to_i    # => 1
(-1.2).to_i # => -1

Note that the limited precision of floating-point arithmetic may lead to surprising results:

(0.3 / 0.1).to_i  # => 2 (!)

Float#to_int is an alias for Float#to_i.

 
               static VALUE
flo_to_i(VALUE num)
{
    double f = RFLOAT_VALUE(num);

    if (f > 0.0) f = floor(f);
    if (f < 0.0) f = ceil(f);

    return dbl2ival(f);
}
            
to_r → rational click to toggle source

Returns the value as a rational.

2.0.to_r    #=> (2/1)
2.5.to_r    #=> (5/2)
-0.75.to_r  #=> (-3/4)
0.0.to_r    #=> (0/1)
0.3.to_r    #=> (5404319552844595/18014398509481984)

NOTE: 0.3.to_r isn't the same as “0.3”.to_r. The latter is equivalent to “3/10”.to_r, but the former isn't so.

0.3.to_r   == 3/10r  #=> false
"0.3".to_r == 3/10r  #=> true

See also Float#rationalize.

 
               static VALUE
float_to_r(VALUE self)
{
    VALUE f;
    int n;

    float_decode_internal(self, &f, &n);
#if FLT_RADIX == 2
    if (n == 0)
        return rb_rational_new1(f);
    if (n > 0)
        return rb_rational_new1(rb_int_lshift(f, INT2FIX(n)));
    n = -n;
    return rb_rational_new2(f, rb_int_lshift(ONE, INT2FIX(n)));
#else
    f = rb_int_mul(f, rb_int_pow(INT2FIX(FLT_RADIX), n));
    if (RB_TYPE_P(f, T_RATIONAL))
        return f;
    return rb_rational_new1(f);
#endif
}
            
to_s → string click to toggle source

Returns a string containing a representation of self; depending of the value of self, the string representation may contain:

  • A fixed-point number.

  • A number in “scientific notation” (containing an exponent).

  • 'Infinity'.

  • '-Infinity'.

  • 'NaN' (indicating not-a-number).

    3.14.to_s # => “3.14” (10.1**50).to_s # => “1.644631821843879e+50” (10.1**500).to_s # => “Infinity” (-10.1**500).to_s # => “-Infinity” (0.0/0.0).to_s # => “NaN”

 
               static VALUE
flo_to_s(VALUE flt)
{
    enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
    enum {float_dig = DBL_DIG+1};
    char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
    double value = RFLOAT_VALUE(flt);
    VALUE s;
    char *p, *e;
    int sign, decpt, digs;

    if (isinf(value)) {
        static const char minf[] = "-Infinity";
        const int pos = (value > 0); /* skip "-" */
        return rb_usascii_str_new(minf+pos, strlen(minf)-pos);
    }
    else if (isnan(value))
        return rb_usascii_str_new2("NaN");

    p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
    s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
    if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
    memcpy(buf, p, digs);
    xfree(p);
    if (decpt > 0) {
        if (decpt < digs) {
            memmove(buf + decpt + 1, buf + decpt, digs - decpt);
            buf[decpt] = '.';
            rb_str_cat(s, buf, digs + 1);
        }
        else if (decpt <= DBL_DIG) {
            long len;
            char *ptr;
            rb_str_cat(s, buf, digs);
            rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
            ptr = RSTRING_PTR(s) + len;
            if (decpt > digs) {
                memset(ptr, '0', decpt - digs);
                ptr += decpt - digs;
            }
            memcpy(ptr, ".0", 2);
        }
        else {
            goto exp;
        }
    }
    else if (decpt > -4) {
        long len;
        char *ptr;
        rb_str_cat(s, "0.", 2);
        rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
        ptr = RSTRING_PTR(s);
        memset(ptr += len, '0', -decpt);
        memcpy(ptr -= decpt, buf, digs);
    }
    else {
        goto exp;
    }
    return s;

  exp:
    if (digs > 1) {
        memmove(buf + 2, buf + 1, digs - 1);
    }
    else {
        buf[2] = '0';
        digs++;
    }
    buf[1] = '.';
    rb_str_cat(s, buf, digs + 1);
    rb_str_catf(s, "e%+03d", decpt - 1);
    return s;
}
            
Also aliased as: inspect
truncate(ndigits = 0) → float or integer click to toggle source

Returns self truncated (toward zero) to a precision of ndigits decimal digits.

When ndigits is positive, returns a float with ndigits digits after the decimal point (as available):

f = 12345.6789
f.truncate(1) # => 12345.6
f.truncate(3) # => 12345.678
f = -12345.6789
f.truncate(1) # => -12345.6
f.truncate(3) # => -12345.678

When ndigits is negative, returns an integer with at least ndigits.abs trailing zeros:

f = 12345.6789
f.truncate(0)  # => 12345
f.truncate(-3) # => 12000
f = -12345.6789
f.truncate(0)  # => -12345
f.truncate(-3) # => -12000

Note that the limited precision of floating-point arithmetic may lead to surprising results:

(0.3 / 0.1).truncate  #=> 2 (!)

Related: Float#round.

 
               static VALUE
flo_truncate(int argc, VALUE *argv, VALUE num)
{
    if (signbit(RFLOAT_VALUE(num)))
        return flo_ceil(argc, argv, num);
    else
        return flo_floor(argc, argv, num);
}
            
zero? → true or false click to toggle source

Returns true if float is 0.0.

 
               # File numeric.rb, line 305
def zero?
  Primitive.attr! 'inline'
  Primitive.cexpr! 'RBOOL(FLOAT_ZERO_P(self))'
end
            
There is an updated format of the API docs for this version here.