![show/hide quicksearch [+]](./images/find.png)
The Math module contains module functions for basic trigonometric and transcendental functions. See class Float for a list of constants that define Ruby's floating point accuracy.
Domains and codomains are given only for real (not complex) numbers.
Computes the arc cosine of x. Returns 0..PI.
Domain: [-1, 1]
Codomain: [0, PI]
Math.acos(0) == Math::PI/2 #=> true
 
               static VALUE
math_acos(VALUE unused_obj, VALUE x)
{
    double d;
    d = Get_Double(x);
    /* check for domain error */
    if (d < -1.0 || 1.0 < d) domain_error("acos");
    return DBL2NUM(acos(d));
}
             
            Computes the inverse hyperbolic cosine of x.
Domain: [1, INFINITY)
Codomain: [0, INFINITY)
Math.acosh(1) #=> 0.0
 
               static VALUE
math_acosh(VALUE unused_obj, VALUE x)
{
    double d;
    d = Get_Double(x);
    /* check for domain error */
    if (d < 1.0) domain_error("acosh");
    return DBL2NUM(acosh(d));
}
             
            Computes the arc sine of x. Returns -PI/2..PI/2.
Domain: [-1, -1]
Codomain: [-PI/2, PI/2]
Math.asin(1) == Math::PI/2 #=> true
 
               static VALUE
math_asin(VALUE unused_obj, VALUE x)
{
    double d;
    d = Get_Double(x);
    /* check for domain error */
    if (d < -1.0 || 1.0 < d) domain_error("asin");
    return DBL2NUM(asin(d));
}
             
            Computes the inverse hyperbolic sine of x.
Domain: (-INFINITY, INFINITY)
Codomain: (-INFINITY, INFINITY)
Math.asinh(1) #=> 0.881373587019543
 
               static VALUE
math_asinh(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(asinh(Get_Double(x)));
}
             
            Computes the arc tangent of x. Returns -PI/2..PI/2.
Domain: (-INFINITY, INFINITY)
Codomain: (-PI/2, PI/2)
Math.atan(0) #=> 0.0
 
               static VALUE
math_atan(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(atan(Get_Double(x)));
}
             
            Computes the arc tangent given y and x. Returns a
Float in the range -PI..PI. Return value is a
angle in radians between the positive x-axis of cartesian plane and the
point given by the coordinates (x, y) on it.
Domain: (-INFINITY, INFINITY)
Codomain: [-PI, PI]
Math.atan2(-0.0, -1.0) #=> -3.141592653589793 Math.atan2(-1.0, -1.0) #=> -2.356194490192345 Math.atan2(-1.0, 0.0) #=> -1.5707963267948966 Math.atan2(-1.0, 1.0) #=> -0.7853981633974483 Math.atan2(-0.0, 1.0) #=> -0.0 Math.atan2(0.0, 1.0) #=> 0.0 Math.atan2(1.0, 1.0) #=> 0.7853981633974483 Math.atan2(1.0, 0.0) #=> 1.5707963267948966 Math.atan2(1.0, -1.0) #=> 2.356194490192345 Math.atan2(0.0, -1.0) #=> 3.141592653589793 Math.atan2(INFINITY, INFINITY) #=> 0.7853981633974483 Math.atan2(INFINITY, -INFINITY) #=> 2.356194490192345 Math.atan2(-INFINITY, INFINITY) #=> -0.7853981633974483 Math.atan2(-INFINITY, -INFINITY) #=> -2.356194490192345
 
               static VALUE
math_atan2(VALUE unused_obj, VALUE y, VALUE x)
{
    double dx, dy;
    dx = Get_Double(x);
    dy = Get_Double(y);
    if (dx == 0.0 && dy == 0.0) {
        if (!signbit(dx))
            return DBL2NUM(dy);
        if (!signbit(dy))
            return DBL2NUM(M_PI);
        return DBL2NUM(-M_PI);
    }
#ifndef ATAN2_INF_C99
    if (isinf(dx) && isinf(dy)) {
        /* optimization for FLONUM */
        if (dx < 0.0) {
            const double dz = (3.0 * M_PI / 4.0);
            return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
        }
        else {
            const double dz = (M_PI / 4.0);
            return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
        }
    }
#endif
    return DBL2NUM(atan2(dy, dx));
}
             
            Computes the inverse hyperbolic tangent of x.
Domain: (-1, 1)
Codomain: (-INFINITY, INFINITY)
Math.atanh(1) #=> Infinity
 
               static VALUE
math_atanh(VALUE unused_obj, VALUE x)
{
    double d;
    d = Get_Double(x);
    /* check for domain error */
    if (d <  -1.0 || +1.0 <  d) domain_error("atanh");
    /* check for pole error */
    if (d == -1.0) return DBL2NUM(-HUGE_VAL);
    if (d == +1.0) return DBL2NUM(+HUGE_VAL);
    return DBL2NUM(atanh(d));
}
             
            Returns the cube root of x.
Domain: (-INFINITY, INFINITY)
Codomain: (-INFINITY, INFINITY)
-9.upto(9) {|x| p [x, Math.cbrt(x), Math.cbrt(x)**3] } #=> [-9, -2.0800838230519, -9.0] # [-8, -2.0, -8.0] # [-7, -1.91293118277239, -7.0] # [-6, -1.81712059283214, -6.0] # [-5, -1.7099759466767, -5.0] # [-4, -1.5874010519682, -4.0] # [-3, -1.44224957030741, -3.0] # [-2, -1.25992104989487, -2.0] # [-1, -1.0, -1.0] # [0, 0.0, 0.0] # [1, 1.0, 1.0] # [2, 1.25992104989487, 2.0] # [3, 1.44224957030741, 3.0] # [4, 1.5874010519682, 4.0] # [5, 1.7099759466767, 5.0] # [6, 1.81712059283214, 6.0] # [7, 1.91293118277239, 7.0] # [8, 2.0, 8.0] # [9, 2.0800838230519, 9.0]
 
               static VALUE
math_cbrt(VALUE unused_obj, VALUE x)
{
    double f = Get_Double(x);
    double r = cbrt(f);
#if defined __GLIBC__
    if (isfinite(r)) {
        r = (2.0 * r + (f / r / r)) / 3.0;
    }
#endif
    return DBL2NUM(r);
}
             
            Computes the cosine of x (expressed in radians). Returns a Float in the range -1.0..1.0.
Domain: (-INFINITY, INFINITY)
Codomain: [-1, 1]
Math.cos(Math::PI) #=> -1.0
 
               static VALUE
math_cos(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(cos(Get_Double(x)));
}
             
            Computes the hyperbolic cosine of x (expressed in radians).
Domain: (-INFINITY, INFINITY)
Codomain: [1, INFINITY)
Math.cosh(0) #=> 1.0
 
               static VALUE
math_cosh(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(cosh(Get_Double(x)));
}
             
            Calculates the error function of x.
Domain: (-INFINITY, INFINITY)
Codomain: (-1, 1)
Math.erf(0) #=> 0.0
 
               static VALUE
math_erf(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(erf(Get_Double(x)));
}
             
            Calculates the complementary error function of x.
Domain: (-INFINITY, INFINITY)
Codomain: (0, 2)
Math.erfc(0) #=> 1.0
 
               static VALUE
math_erfc(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(erfc(Get_Double(x)));
}
             
            Returns e**x.
Domain: (-INFINITY, INFINITY)
Codomain: (0, INFINITY)
Math.exp(0) #=> 1.0 Math.exp(1) #=> 2.718281828459045 Math.exp(1.5) #=> 4.4816890703380645
 
               static VALUE
math_exp(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(exp(Get_Double(x)));
}
             
            Returns a two-element array containing the normalized fraction (a Float) and exponent (an Integer) of x.
fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11] fraction * 2**exponent #=> 1234.0
 
               static VALUE
math_frexp(VALUE unused_obj, VALUE x)
{
    double d;
    int exp;
    d = frexp(Get_Double(x), &exp);
    return rb_assoc_new(DBL2NUM(d), INT2NUM(exp));
}
             
            Calculates the gamma function of x.
Note that gamma(n) is same as fact(n-1) for integer n > 0. However gamma(n) returns float and can be an approximation.
def fact(n) (1..n).inject(1) {|r,i| r*i } end 1.upto(26) {|i| p [i, Math.gamma(i), fact(i-1)] } #=> [1, 1.0, 1] # [2, 1.0, 1] # [3, 2.0, 2] # [4, 6.0, 6] # [5, 24.0, 24] # [6, 120.0, 120] # [7, 720.0, 720] # [8, 5040.0, 5040] # [9, 40320.0, 40320] # [10, 362880.0, 362880] # [11, 3628800.0, 3628800] # [12, 39916800.0, 39916800] # [13, 479001600.0, 479001600] # [14, 6227020800.0, 6227020800] # [15, 87178291200.0, 87178291200] # [16, 1307674368000.0, 1307674368000] # [17, 20922789888000.0, 20922789888000] # [18, 355687428096000.0, 355687428096000] # [19, 6.402373705728e+15, 6402373705728000] # [20, 1.21645100408832e+17, 121645100408832000] # [21, 2.43290200817664e+18, 2432902008176640000] # [22, 5.109094217170944e+19, 51090942171709440000] # [23, 1.1240007277776077e+21, 1124000727777607680000] # [24, 2.5852016738885062e+22, 25852016738884976640000] # [25, 6.204484017332391e+23, 620448401733239439360000] # [26, 1.5511210043330954e+25, 15511210043330985984000000]
 
               static VALUE
math_gamma(VALUE unused_obj, VALUE x)
{
    static const double fact_table[] = {
        /* fact(0) */ 1.0,
        /* fact(1) */ 1.0,
        /* fact(2) */ 2.0,
        /* fact(3) */ 6.0,
        /* fact(4) */ 24.0,
        /* fact(5) */ 120.0,
        /* fact(6) */ 720.0,
        /* fact(7) */ 5040.0,
        /* fact(8) */ 40320.0,
        /* fact(9) */ 362880.0,
        /* fact(10) */ 3628800.0,
        /* fact(11) */ 39916800.0,
        /* fact(12) */ 479001600.0,
        /* fact(13) */ 6227020800.0,
        /* fact(14) */ 87178291200.0,
        /* fact(15) */ 1307674368000.0,
        /* fact(16) */ 20922789888000.0,
        /* fact(17) */ 355687428096000.0,
        /* fact(18) */ 6402373705728000.0,
        /* fact(19) */ 121645100408832000.0,
        /* fact(20) */ 2432902008176640000.0,
        /* fact(21) */ 51090942171709440000.0,
        /* fact(22) */ 1124000727777607680000.0,
        /* fact(23)=25852016738884976640000 needs 56bit mantissa which is
         * impossible to represent exactly in IEEE 754 double which have
         * 53bit mantissa. */
    };
    enum {NFACT_TABLE = numberof(fact_table)};
    double d;
    d = Get_Double(x);
    /* check for domain error */
    if (isinf(d)) {
        if (signbit(d)) domain_error("gamma");
        return DBL2NUM(HUGE_VAL);
    }
    if (d == 0.0) {
        return signbit(d) ? DBL2NUM(-HUGE_VAL) : DBL2NUM(HUGE_VAL);
    }
    if (d == floor(d)) {
        if (d < 0.0) domain_error("gamma");
        if (1.0 <= d && d <= (double)NFACT_TABLE) {
            return DBL2NUM(fact_table[(int)d - 1]);
        }
    }
    return DBL2NUM(tgamma(d));
}
             
            Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle with
sides x and y.
Math.hypot(3, 4) #=> 5.0
 
               static VALUE
math_hypot(VALUE unused_obj, VALUE x, VALUE y)
{
    return DBL2NUM(hypot(Get_Double(x), Get_Double(y)));
}
             
            Returns the value of fraction*(2**exponent).
fraction, exponent = Math.frexp(1234) Math.ldexp(fraction, exponent) #=> 1234.0
 
               static VALUE
math_ldexp(VALUE unused_obj, VALUE x, VALUE n)
{
    return DBL2NUM(ldexp(Get_Double(x), NUM2INT(n)));
}
             
            Calculates the logarithmic gamma of x and the sign of gamma of
x.
::lgamma is same as
[Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]
but avoid overflow by ::gamma for large x.
Math.lgamma(0) #=> [Infinity, 1]
 
               static VALUE
math_lgamma(VALUE unused_obj, VALUE x)
{
    double d;
    int sign=1;
    VALUE v;
    d = Get_Double(x);
    /* check for domain error */
    if (isinf(d)) {
        if (signbit(d)) domain_error("lgamma");
        return rb_assoc_new(DBL2NUM(HUGE_VAL), INT2FIX(1));
    }
    if (d == 0.0) {
        VALUE vsign = signbit(d) ? INT2FIX(-1) : INT2FIX(+1);
        return rb_assoc_new(DBL2NUM(HUGE_VAL), vsign);
    }
    v = DBL2NUM(lgamma_r(d, &sign));
    return rb_assoc_new(v, INT2FIX(sign));
}
             
            Returns the base 10 logarithm of x.
Domain: (0, INFINITY)
Codomain: (-INFINITY, INFINITY)
Math.log10(1) #=> 0.0 Math.log10(10) #=> 1.0 Math.log10(10**100) #=> 100.0
 
               static VALUE
math_log10(VALUE unused_obj, VALUE x)
{
    size_t numbits;
    double d = get_double_rshift(x, &numbits);
    /* check for domain error */
    if (d < 0.0) domain_error("log10");
    /* check for pole error */
    if (d == 0.0) return DBL2NUM(-HUGE_VAL);
    return DBL2NUM(log10(d) + numbits * log10(2)); /* log10(d * 2 ** numbits) */
}
             
            Returns the base 2 logarithm of x.
Domain: (0, INFINITY)
Codomain: (-INFINITY, INFINITY)
Math.log2(1) #=> 0.0 Math.log2(2) #=> 1.0 Math.log2(32768) #=> 15.0 Math.log2(65536) #=> 16.0
 
               static VALUE
math_log2(VALUE unused_obj, VALUE x)
{
    size_t numbits;
    double d = get_double_rshift(x, &numbits);
    /* check for domain error */
    if (d < 0.0) domain_error("log2");
    /* check for pole error */
    if (d == 0.0) return DBL2NUM(-HUGE_VAL);
    return DBL2NUM(log2(d) + numbits); /* log2(d * 2 ** numbits) */
}
             
            Computes the sine of x (expressed in radians). Returns a Float in the range -1.0..1.0.
Domain: (-INFINITY, INFINITY)
Codomain: [-1, 1]
Math.sin(Math::PI/2) #=> 1.0
 
               static VALUE
math_sin(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(sin(Get_Double(x)));
}
             
            Computes the hyperbolic sine of x (expressed in radians).
Domain: (-INFINITY, INFINITY)
Codomain: (-INFINITY, INFINITY)
Math.sinh(0) #=> 0.0
 
               static VALUE
math_sinh(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(sinh(Get_Double(x)));
}
             
            Returns the non-negative square root of x.
Domain: [0, INFINITY)
Codomain:[0, INFINITY)
0.upto(10) {|x| p [x, Math.sqrt(x), Math.sqrt(x)**2] } #=> [0, 0.0, 0.0] # [1, 1.0, 1.0] # [2, 1.4142135623731, 2.0] # [3, 1.73205080756888, 3.0] # [4, 2.0, 4.0] # [5, 2.23606797749979, 5.0] # [6, 2.44948974278318, 6.0] # [7, 2.64575131106459, 7.0] # [8, 2.82842712474619, 8.0] # [9, 3.0, 9.0] # [10, 3.16227766016838, 10.0]
Note that the limited precision of floating point arithmetic might lead to surprising results:
Math.sqrt(10**46).to_i #=> 99999999999999991611392 (!)
See also BigDecimal#sqrt and Integer.sqrt.
 
               static VALUE
math_sqrt(VALUE unused_obj, VALUE x)
{
    return rb_math_sqrt(x);
}