Provides functionality of various KDFs (key derivation function).
KDF is typically used for securely deriving arbitrary length symmetric keys to be used with an OpenSSL::Cipher from passwords. Another use case is for storing passwords: Due to the ability to tweak the effort of computation by increasing the iteration count, computation can be slowed down artificially in order to render possible attacks infeasible.
Currently, OpenSSL::KDF provides implementations for the following KDF:
PKCS #5 PBKDF2 (Password-Based Key Derivation Function 2) in combination with HMAC
scrypt
HKDF
pass = "secret" salt = OpenSSL::Random.random_bytes(16) iter = 20_000 key_len = 16 key = OpenSSL::KDF.pbkdf2_hmac(pass, salt: salt, iterations: iter, length: key_len, hash: "sha1")
pass = "secret" # store this with the generated value salt = OpenSSL::Random.random_bytes(16) iter = 20_000 hash = OpenSSL::Digest.new('SHA256') len = hash.digest_length # the final value to be stored value = OpenSSL::KDF.pbkdf2_hmac(pass, salt: salt, iterations: iter, length: len, hash: hash)
When comparing passwords provided by the user with previously stored
values, a common mistake made is comparing the two values using “==”.
Typically, “==” short-circuits on evaluation, and is therefore vulnerable
to timing attacks. The proper way is to use a method that always takes the
same amount of time when comparing two values, thus not leaking any
information to potential attackers. To do this, use
OpenSSL.fixed_length_secure_compare
.
HMAC-based Extract-and-Expand Key Derivation Function (HKDF) as specified in RFC 5869.
New in OpenSSL 1.1.0.
The input keying material.
The salt.
The context and application specific information.
The output length in octets. Must be <= 255 * HashLen
,
where HashLen is the length of the hash function output in octets.
The hash function.
# The values from https://datatracker.ietf.org/doc/html/rfc5869#appendix-A.1 ikm = ["0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b"].pack("H*") salt = ["000102030405060708090a0b0c"].pack("H*") info = ["f0f1f2f3f4f5f6f7f8f9"].pack("H*") p OpenSSL::KDF.hkdf(ikm, salt: salt, info: info, length: 42, hash: "SHA256").unpack1("H*") # => "3cb25f25faacd57a90434f64d0362f2a2d2d0a90cf1a5a4c5db02d56ecc4c5bf34007208d5b887185865"
static VALUE kdf_hkdf(int argc, VALUE *argv, VALUE self) { VALUE ikm, salt, info, opts, kwargs[4], str; static ID kwargs_ids[4]; int saltlen, ikmlen, infolen; size_t len; const EVP_MD *md; EVP_PKEY_CTX *pctx; if (!kwargs_ids[0]) { kwargs_ids[0] = rb_intern_const("salt"); kwargs_ids[1] = rb_intern_const("info"); kwargs_ids[2] = rb_intern_const("length"); kwargs_ids[3] = rb_intern_const("hash"); } rb_scan_args(argc, argv, "1:", &ikm, &opts); rb_get_kwargs(opts, kwargs_ids, 4, 0, kwargs); StringValue(ikm); ikmlen = RSTRING_LENINT(ikm); salt = StringValue(kwargs[0]); saltlen = RSTRING_LENINT(salt); info = StringValue(kwargs[1]); infolen = RSTRING_LENINT(info); len = (size_t)NUM2LONG(kwargs[2]); if (len > LONG_MAX) rb_raise(rb_eArgError, "length must be non-negative"); md = ossl_evp_get_digestbyname(kwargs[3]); str = rb_str_new(NULL, (long)len); pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL); if (!pctx) ossl_raise(eKDF, "EVP_PKEY_CTX_new_id"); if (EVP_PKEY_derive_init(pctx) <= 0) { EVP_PKEY_CTX_free(pctx); ossl_raise(eKDF, "EVP_PKEY_derive_init"); } if (EVP_PKEY_CTX_set_hkdf_md(pctx, md) <= 0) { EVP_PKEY_CTX_free(pctx); ossl_raise(eKDF, "EVP_PKEY_CTX_set_hkdf_md"); } if (EVP_PKEY_CTX_set1_hkdf_salt(pctx, (unsigned char *)RSTRING_PTR(salt), saltlen) <= 0) { EVP_PKEY_CTX_free(pctx); ossl_raise(eKDF, "EVP_PKEY_CTX_set_hkdf_salt"); } if (EVP_PKEY_CTX_set1_hkdf_key(pctx, (unsigned char *)RSTRING_PTR(ikm), ikmlen) <= 0) { EVP_PKEY_CTX_free(pctx); ossl_raise(eKDF, "EVP_PKEY_CTX_set_hkdf_key"); } if (EVP_PKEY_CTX_add1_hkdf_info(pctx, (unsigned char *)RSTRING_PTR(info), infolen) <= 0) { EVP_PKEY_CTX_free(pctx); ossl_raise(eKDF, "EVP_PKEY_CTX_set_hkdf_info"); } if (EVP_PKEY_derive(pctx, (unsigned char *)RSTRING_PTR(str), &len) <= 0) { EVP_PKEY_CTX_free(pctx); ossl_raise(eKDF, "EVP_PKEY_derive"); } rb_str_set_len(str, (long)len); EVP_PKEY_CTX_free(pctx); return str; }
PKCS #5 PBKDF2 (Password-Based Key Derivation Function 2) in combination with HMAC. Takes pass, salt and iterations, and then derives a key of length bytes.
For more information about PBKDF2, see RFC 2898 Section 5.2 (tools.ietf.org/html/rfc2898#section-5.2).
The passphrase.
The salt. Salts prevent attacks based on dictionaries of common passwords and attacks based on rainbow tables. It is a public value that can be safely stored along with the password (e.g. if the derived value is used for password storage).
The iteration count. This provides the ability to tune the algorithm. It is better to use the highest count possible for the maximum resistance to brute-force attacks.
The desired length of the derived key in octets.
The hash algorithm used with HMAC for the PRF. May be a String representing the algorithm name, or an instance of OpenSSL::Digest.
static VALUE kdf_pbkdf2_hmac(int argc, VALUE *argv, VALUE self) { VALUE pass, salt, opts, kwargs[4], str; static ID kwargs_ids[4]; int iters, len; const EVP_MD *md; if (!kwargs_ids[0]) { kwargs_ids[0] = rb_intern_const("salt"); kwargs_ids[1] = rb_intern_const("iterations"); kwargs_ids[2] = rb_intern_const("length"); kwargs_ids[3] = rb_intern_const("hash"); } rb_scan_args(argc, argv, "1:", &pass, &opts); rb_get_kwargs(opts, kwargs_ids, 4, 0, kwargs); StringValue(pass); salt = StringValue(kwargs[0]); iters = NUM2INT(kwargs[1]); len = NUM2INT(kwargs[2]); md = ossl_evp_get_digestbyname(kwargs[3]); str = rb_str_new(0, len); if (!PKCS5_PBKDF2_HMAC(RSTRING_PTR(pass), RSTRING_LENINT(pass), (unsigned char *)RSTRING_PTR(salt), RSTRING_LENINT(salt), iters, md, len, (unsigned char *)RSTRING_PTR(str))) ossl_raise(eKDF, "PKCS5_PBKDF2_HMAC"); return str; }
Derives a key from pass using given parameters with the scrypt password-based key derivation function. The result can be used for password storage.
scrypt is designed to be memory-hard and more secure against brute-force attacks using custom hardwares than alternative KDFs such as PBKDF2 or bcrypt.
The keyword arguments N, r and p can be used to tune scrypt. RFC 7914 (published on 2016-08, tools.ietf.org/html/rfc7914#section-2) states that using values r=8 and p=1 appears to yield good results.
See RFC 7914 (tools.ietf.org/html/rfc7914) for more information.
Passphrase.
Salt.
CPU/memory cost parameter. This must be a power of 2.
Block size parameter.
Parallelization parameter.
Length in octets of the derived key.
pass = "password" salt = SecureRandom.random_bytes(16) dk = OpenSSL::KDF.scrypt(pass, salt: salt, N: 2**14, r: 8, p: 1, length: 32) p dk #=> "\xDA\xE4\xE2...\x7F\xA1\x01T"
static VALUE kdf_scrypt(int argc, VALUE *argv, VALUE self) { VALUE pass, salt, opts, kwargs[5], str; static ID kwargs_ids[5]; size_t len; uint64_t N, r, p, maxmem; if (!kwargs_ids[0]) { kwargs_ids[0] = rb_intern_const("salt"); kwargs_ids[1] = rb_intern_const("N"); kwargs_ids[2] = rb_intern_const("r"); kwargs_ids[3] = rb_intern_const("p"); kwargs_ids[4] = rb_intern_const("length"); } rb_scan_args(argc, argv, "1:", &pass, &opts); rb_get_kwargs(opts, kwargs_ids, 5, 0, kwargs); StringValue(pass); salt = StringValue(kwargs[0]); N = NUM2UINT64T(kwargs[1]); r = NUM2UINT64T(kwargs[2]); p = NUM2UINT64T(kwargs[3]); len = NUM2LONG(kwargs[4]); /* * OpenSSL uses 32MB by default (if zero is specified), which is too small. * Let's not limit memory consumption but just let malloc() fail inside * OpenSSL. The amount is controllable by other parameters. */ maxmem = SIZE_MAX; str = rb_str_new(0, len); if (!EVP_PBE_scrypt(RSTRING_PTR(pass), RSTRING_LEN(pass), (unsigned char *)RSTRING_PTR(salt), RSTRING_LEN(salt), N, r, p, maxmem, (unsigned char *)RSTRING_PTR(str), len)) ossl_raise(eKDF, "EVP_PBE_scrypt"); return str; }