Object
The Matrix class represents a mathematical matrix. It provides methods for creating matrices, operating on them arithmetically and algebraically, and determining their mathematical properties such as trace, rank, inverse, determinant, or eigensystem.
Creates a matrix where each argument is a row.
Matrix[ [25, 93], [-1, 66] ] # => 25 93 # -1 66
# File matrix-0.4.2/lib/matrix.rb, line 78
def Matrix.[](*rows)
rows(rows, false)
end
Creates a matrix of size row_count x column_count. It fills the values by calling the given block, passing the current row and column. Returns an enumerator if no block is given.
m = Matrix.build(2, 4) {|row, col| col - row } # => Matrix[[0, 1, 2, 3], [-1, 0, 1, 2]] m = Matrix.build(3) { rand } # => a 3x3 matrix with random elements
# File matrix-0.4.2/lib/matrix.rb, line 123
def Matrix.build(row_count, column_count = row_count)
row_count = CoercionHelper.coerce_to_int(row_count)
column_count = CoercionHelper.coerce_to_int(column_count)
raise ArgumentError if row_count < 0 || column_count < 0
return to_enum :build, row_count, column_count unless block_given?
rows = Array.new(row_count) do |i|
Array.new(column_count) do |j|
yield i, j
end
end
new rows, column_count
end
Creates a single-column matrix where the values of that column are as given in column.
Matrix.column_vector([4,5,6]) # => 4 # 5 # 6
# File matrix-0.4.2/lib/matrix.rb, line 209
def Matrix.column_vector(column)
column = convert_to_array(column)
new [column].transpose, 1
end
Creates a matrix using columns as an array of column vectors.
Matrix.columns([[25, 93], [-1, 66]]) # => 25 -1 # 93 66
# File matrix-0.4.2/lib/matrix.rb, line 108
def Matrix.columns(columns)
rows(columns, false).transpose
end
Create a matrix by combining matrices entrywise, using the given block
x = Matrix[[6, 6], [4, 4]] y = Matrix[[1, 2], [3, 4]] Matrix.combine(x, y) {|a, b| a - b} # => Matrix[[5, 4], [1, 0]]
# File matrix-0.4.2/lib/matrix.rb, line 288
def Matrix.combine(*matrices)
return to_enum(__method__, *matrices) unless block_given?
return Matrix.empty if matrices.empty?
matrices.map!(&CoercionHelper.method(:coerce_to_matrix))
x = matrices.first
matrices.each do |m|
raise ErrDimensionMismatch unless x.row_count == m.row_count && x.column_count == m.column_count
end
rows = Array.new(x.row_count) do |i|
Array.new(x.column_count) do |j|
yield matrices.map{|m| m[i,j]}
end
end
new rows, x.column_count
end
Creates a matrix where the diagonal elements are composed of values.
Matrix.diagonal(9, 5, -3) # => 9 0 0 # 0 5 0 # 0 0 -3
# File matrix-0.4.2/lib/matrix.rb, line 143
def Matrix.diagonal(*values)
size = values.size
return Matrix.empty if size == 0
rows = Array.new(size) {|j|
row = Array.new(size, 0)
row[j] = values[j]
row
}
new rows
end
Creates a empty matrix of row_count x column_count. At least one of row_count or column_count must be 0.
m = Matrix.empty(2, 0) m == Matrix[ [], [] ] # => true n = Matrix.empty(0, 3) n == Matrix.columns([ [], [], [] ]) # => true m * n # => Matrix[[0, 0, 0], [0, 0, 0]]
# File matrix-0.4.2/lib/matrix.rb, line 227
def Matrix.empty(row_count = 0, column_count = 0)
raise ArgumentError, "One size must be 0" if column_count != 0 && row_count != 0
raise ArgumentError, "Negative size" if column_count < 0 || row_count < 0
new([[]]*row_count, column_count)
end
Create a matrix by stacking matrices horizontally
x = Matrix[[1, 2], [3, 4]] y = Matrix[[5, 6], [7, 8]] Matrix.hstack(x, y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
# File matrix-0.4.2/lib/matrix.rb, line 262
def Matrix.hstack(x, *matrices)
x = CoercionHelper.coerce_to_matrix(x)
result = x.send(:rows).map(&:dup)
total_column_count = x.column_count
matrices.each do |m|
m = CoercionHelper.coerce_to_matrix(m)
if m.row_count != x.row_count
raise ErrDimensionMismatch, "The given matrices must have #{x.row_count} rows, but one has #{m.row_count}"
end
result.each_with_index do |row, i|
row.concat m.send(:rows)[i]
end
total_column_count += m.column_count
end
new result, total_column_count
end
Creates an n by n identity matrix.
Matrix.identity(2) # => 1 0 # 0 1
# File matrix-0.4.2/lib/matrix.rb, line 171
def Matrix.identity(n)
scalar(n, 1)
end
Matrix.new is private; use ::rows, ::columns, ::[], etc… to create.
# File matrix-0.4.2/lib/matrix.rb, line 322
def initialize(rows, column_count = rows[0].size)
# No checking is done at this point. rows must be an Array of Arrays.
# column_count must be the size of the first row, if there is one,
# otherwise it *must* be specified and can be any integer >= 0
@rows = rows
@column_count = column_count
end
Creates a single-row matrix where the values of that row are as given in row.
Matrix.row_vector([4,5,6]) # => 4 5 6
# File matrix-0.4.2/lib/matrix.rb, line 196
def Matrix.row_vector(row)
row = convert_to_array(row)
new [row]
end
Creates a matrix where rows is an array of arrays, each of which is a row of the matrix. If the optional argument copy is false, use the given arrays as the internal structure of the matrix without copying.
Matrix.rows([[25, 93], [-1, 66]]) # => 25 93 # -1 66
# File matrix-0.4.2/lib/matrix.rb, line 90
def Matrix.rows(rows, copy = true)
rows = convert_to_array(rows, copy)
rows.map! do |row|
convert_to_array(row, copy)
end
size = (rows[0] || []).size
rows.each do |row|
raise ErrDimensionMismatch, "row size differs (#{row.size} should be #{size})" unless row.size == size
end
new rows, size
end
Creates an n by n diagonal matrix where each diagonal element is value.
Matrix.scalar(2, 5) # => 5 0 # 0 5
# File matrix-0.4.2/lib/matrix.rb, line 161
def Matrix.scalar(n, value)
diagonal(*Array.new(n, value))
end
Create a matrix by stacking matrices vertically
x = Matrix[[1, 2], [3, 4]] y = Matrix[[5, 6], [7, 8]] Matrix.vstack(x, y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
# File matrix-0.4.2/lib/matrix.rb, line 241
def Matrix.vstack(x, *matrices)
x = CoercionHelper.coerce_to_matrix(x)
result = x.send(:rows).map(&:dup)
matrices.each do |m|
m = CoercionHelper.coerce_to_matrix(m)
if m.column_count != x.column_count
raise ErrDimensionMismatch, "The given matrices must have #{x.column_count} columns, but one has #{m.column_count}"
end
result.concat(m.send(:rows))
end
new result, x.column_count
end
Matrix multiplication.
Matrix[[2,4], [6,8]] * Matrix.identity(2) # => 2 4 # 6 8
# File matrix-0.4.2/lib/matrix.rb, line 1058
def *(m) # m is matrix or vector or number
case(m)
when Numeric
new_rows = @rows.collect {|row|
row.collect {|e| e * m }
}
return new_matrix new_rows, column_count
when Vector
m = self.class.column_vector(m)
r = self * m
return r.column(0)
when Matrix
raise ErrDimensionMismatch if column_count != m.row_count
m_rows = m.rows
new_rows = rows.map do |row_i|
Array.new(m.column_count) do |j|
vij = 0
column_count.times do |k|
vij += row_i[k] * m_rows[k][j]
end
vij
end
end
return new_matrix new_rows, m.column_count
else
return apply_through_coercion(m, __method__)
end
end
Matrix exponentiation. Equivalent to multiplying the matrix by itself N times. Non integer exponents will be handled by diagonalizing the matrix.
Matrix[[7,6], [3,9]] ** 2 # => 67 96 # 48 99
# File matrix-0.4.2/lib/matrix.rb, line 1237
def **(exp)
case exp
when Integer
case
when exp == 0
raise ErrDimensionMismatch unless square?
self.class.identity(column_count)
when exp < 0
inverse.power_int(-exp)
else
power_int(exp)
end
when Numeric
v, d, v_inv = eigensystem
v * self.class.diagonal(*d.each(:diagonal).map{|e| e ** exp}) * v_inv
else
raise ErrOperationNotDefined, ["**", self.class, exp.class]
end
end
Matrix addition.
Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]] # => 6 0 # -4 12
# File matrix-0.4.2/lib/matrix.rb, line 1093
def +(m)
case m
when Numeric
raise ErrOperationNotDefined, ["+", self.class, m.class]
when Vector
m = self.class.column_vector(m)
when Matrix
else
return apply_through_coercion(m, __method__)
end
raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count
rows = Array.new(row_count) {|i|
Array.new(column_count) {|j|
self[i, j] + m[i, j]
}
}
new_matrix rows, column_count
end
Matrix subtraction.
Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]] # => -8 2 # 8 1
# File matrix-0.4.2/lib/matrix.rb, line 1120
def -(m)
case m
when Numeric
raise ErrOperationNotDefined, ["-", self.class, m.class]
when Vector
m = self.class.column_vector(m)
when Matrix
else
return apply_through_coercion(m, __method__)
end
raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count
rows = Array.new(row_count) {|i|
Array.new(column_count) {|j|
self[i, j] - m[i, j]
}
}
new_matrix rows, column_count
end
Unary matrix negation.
-Matrix[[1,5], [4,2]] # => -1 -5 # -4 -2
# File matrix-0.4.2/lib/matrix.rb, line 1292
def -@
collect {|e| -e }
end
Matrix division (multiplication by the inverse).
Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]] # => -7 1 # -3 -6
# File matrix-0.4.2/lib/matrix.rb, line 1147
def /(other)
case other
when Numeric
rows = @rows.collect {|row|
row.collect {|e| e / other }
}
return new_matrix rows, column_count
when Matrix
return self * other.inverse
else
return apply_through_coercion(other, __method__)
end
end
Returns whether the two matrices contain equal elements.
# File matrix-0.4.2/lib/matrix.rb, line 1021
def ==(other)
return false unless Matrix === other &&
column_count == other.column_count # necessary for empty matrices
rows == other.rows
end
Returns element (i,j) of the matrix. That is: row i, column j.
# File matrix-0.4.2/lib/matrix.rb, line 337
def [](i, j)
@rows.fetch(i){return nil}[j]
end
Set element or elements of matrix.
# File matrix-0.4.2/lib/matrix.rb, line 351
def []=(i, j, v)
raise FrozenError, "can't modify frozen Matrix" if frozen?
rows = check_range(i, :row) or row = check_int(i, :row)
columns = check_range(j, :column) or column = check_int(j, :column)
if rows && columns
set_row_and_col_range(rows, columns, v)
elsif rows
set_row_range(rows, column, v)
elsif columns
set_col_range(row, columns, v)
else
set_value(row, column, v)
end
end
Returns the absolute value elementwise
# File matrix-0.4.2/lib/matrix.rb, line 1299
def abs
collect(&:abs)
end
Returns the adjoint of the matrix.
Matrix[ [i,1],[2,-i] ].adjoint # => -i 2 # 1 i
# File matrix-0.4.2/lib/matrix.rb, line 1595
def adjoint
conjugate.transpose
end
Returns the adjugate of the matrix.
Matrix[ [7,6],[3,9] ].adjugate # => 9 -6 # -3 7
# File matrix-0.4.2/lib/matrix.rb, line 793
def adjugate
raise ErrDimensionMismatch unless square?
Matrix.build(row_count, column_count) do |row, column|
cofactor(column, row)
end
end
Returns true if this is an antisymmetric matrix. Raises an error if matrix is not square.
# File matrix-0.4.2/lib/matrix.rb, line 973
def antisymmetric?
raise ErrDimensionMismatch unless square?
each_with_index(:upper) do |e, row, col|
return false unless e == -rows[col][row]
end
true
end
The coerce method provides support for Ruby type coercion. This coercion mechanism is used by Ruby to handle mixed-type numeric operations: it is intended to find a compatible common type between the two operands of the operator. See also Numeric#coerce.
# File matrix-0.4.2/lib/matrix.rb, line 1648
def coerce(other)
case other
when Numeric
return Scalar.new(other), self
else
raise TypeError, "#{self.class} can't be coerced into #{other.class}"
end
end
Returns the (row, column) cofactor which is obtained by multiplying the first minor by (-1)**(row + column).
Matrix.diagonal(9, 5, -3, 4).cofactor(1, 1) # => -108
# File matrix-0.4.2/lib/matrix.rb, line 778
def cofactor(row, column)
raise RuntimeError, "cofactor of empty matrix is not defined" if empty?
raise ErrDimensionMismatch unless square?
det_of_minor = first_minor(row, column).determinant
det_of_minor * (-1) ** (row + column)
end
Returns a matrix that is the result of iteration of the given block over all elements of the matrix. Elements can be restricted by passing an argument:
:all (default): yields all elements
:diagonal: yields only elements on the diagonal
:off_diagonal: yields all elements except on the diagonal
:lower: yields only elements on or below the diagonal
:strict_lower: yields only elements below the diagonal
:strict_upper: yields only elements above the diagonal
:upper: yields only elements on or above the diagonal Matrix[ [1,2], [3,4] ].collect { |e| e**2 } # => 1 4 # 9 16
# File matrix-0.4.2/lib/matrix.rb, line 508
def collect(which = :all, &block) # :yield: e
return to_enum(:collect, which) unless block_given?
dup.collect!(which, &block)
end
Invokes the given block for each element of matrix, replacing the element with the value returned by the block. Elements can be restricted by passing an argument:
:all (default): yields all elements
:diagonal: yields only elements on the diagonal
:off_diagonal: yields all elements except on the diagonal
:lower: yields only elements on or below the diagonal
:strict_lower: yields only elements below the diagonal
:strict_upper: yields only elements above the diagonal
:upper: yields only elements on or above the diagonal
# File matrix-0.4.2/lib/matrix.rb, line 526
def collect!(which = :all)
return to_enum(:collect!, which) unless block_given?
raise FrozenError, "can't modify frozen Matrix" if frozen?
each_with_index(which){ |e, row_index, col_index| @rows[row_index][col_index] = yield e }
end
Returns column vector number j of the matrix as a Vector (starting at 0 like an array). When a block is given, the elements of that vector are iterated.
# File matrix-0.4.2/lib/matrix.rb, line 477
def column(j) # :yield: e
if block_given?
return self if j >= column_count || j < -column_count
row_count.times do |i|
yield @rows[i][j]
end
self
else
return nil if j >= column_count || j < -column_count
col = Array.new(row_count) {|i|
@rows[i][j]
}
Vector.elements(col, false)
end
end
Returns an array of the column vectors of the matrix. See Vector.
# File matrix-0.4.2/lib/matrix.rb, line 1669
def column_vectors
Array.new(column_count) {|i|
column(i)
}
end
Creates new matrix by combining with other_matrices entrywise, using the given block.
x = Matrix[[6, 6], [4, 4]] y = Matrix[[1, 2], [3, 4]] x.combine(y) {|a, b| a - b} # => Matrix[[5, 4], [1, 0]]
# File matrix-0.4.2/lib/matrix.rb, line 315
def combine(*matrices, &block)
Matrix.combine(self, *matrices, &block)
end
Returns the conjugate of the matrix.
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]] # => 1+2i i 0 # 1 2 3 Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate # => 1-2i -i 0 # 1 2 3
# File matrix-0.4.2/lib/matrix.rb, line 1583
def conjugate
collect(&:conjugate)
end
Returns the determinant of the matrix.
Beware that using Float values can yield erroneous results because of their lack of precision. Consider using exact types like Rational or BigDecimal instead.
Matrix[[7,6], [3,9]].determinant # => 45
# File matrix-0.4.2/lib/matrix.rb, line 1317
def determinant
raise ErrDimensionMismatch unless square?
m = @rows
case row_count
# Up to 4x4, give result using Laplacian expansion by minors.
# This will typically be faster, as well as giving good results
# in case of Floats
when 0
+1
when 1
+ m[0][0]
when 2
+ m[0][0] * m[1][1] - m[0][1] * m[1][0]
when 3
m0, m1, m2 = m
+ m0[0] * m1[1] * m2[2] - m0[0] * m1[2] * m2[1] \
- m0[1] * m1[0] * m2[2] + m0[1] * m1[2] * m2[0] \
+ m0[2] * m1[0] * m2[1] - m0[2] * m1[1] * m2[0]
when 4
m0, m1, m2, m3 = m
+ m0[0] * m1[1] * m2[2] * m3[3] - m0[0] * m1[1] * m2[3] * m3[2] \
- m0[0] * m1[2] * m2[1] * m3[3] + m0[0] * m1[2] * m2[3] * m3[1] \
+ m0[0] * m1[3] * m2[1] * m3[2] - m0[0] * m1[3] * m2[2] * m3[1] \
- m0[1] * m1[0] * m2[2] * m3[3] + m0[1] * m1[0] * m2[3] * m3[2] \
+ m0[1] * m1[2] * m2[0] * m3[3] - m0[1] * m1[2] * m2[3] * m3[0] \
- m0[1] * m1[3] * m2[0] * m3[2] + m0[1] * m1[3] * m2[2] * m3[0] \
+ m0[2] * m1[0] * m2[1] * m3[3] - m0[2] * m1[0] * m2[3] * m3[1] \
- m0[2] * m1[1] * m2[0] * m3[3] + m0[2] * m1[1] * m2[3] * m3[0] \
+ m0[2] * m1[3] * m2[0] * m3[1] - m0[2] * m1[3] * m2[1] * m3[0] \
- m0[3] * m1[0] * m2[1] * m3[2] + m0[3] * m1[0] * m2[2] * m3[1] \
+ m0[3] * m1[1] * m2[0] * m3[2] - m0[3] * m1[1] * m2[2] * m3[0] \
- m0[3] * m1[2] * m2[0] * m3[1] + m0[3] * m1[2] * m2[1] * m3[0]
else
# For bigger matrices, use an efficient and general algorithm.
# Currently, we use the Gauss-Bareiss algorithm
determinant_bareiss
end
end
deprecated; use Matrix#determinant
# File matrix-0.4.2/lib/matrix.rb, line 1398
def determinant_e
warn "Matrix#determinant_e is deprecated; use #determinant", uplevel: 1
determinant
end
Returns true if this is a diagonal matrix. Raises an error if matrix is not square.
# File matrix-0.4.2/lib/matrix.rb, line 839
def diagonal?
raise ErrDimensionMismatch unless square?
each(:off_diagonal).all?(&:zero?)
end
Yields all elements of the matrix, starting with those of the first row, or returns an Enumerator if no block given. Elements can be restricted by passing an argument:
:all (default): yields all elements
:diagonal: yields only elements on the diagonal
:off_diagonal: yields all elements except on the diagonal
:lower: yields only elements on or below the diagonal
:strict_lower: yields only elements below the diagonal
:strict_upper: yields only elements above the diagonal
:upper: yields only elements on or above the diagonal
Matrix[ [1,2], [3,4] ].each { |e| puts e } # => prints the numbers 1 to 4 Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3]
# File matrix-0.4.2/lib/matrix.rb, line 556
def each(which = :all, &block) # :yield: e
return to_enum :each, which unless block_given?
last = column_count - 1
case which
when :all
@rows.each do |row|
row.each(&block)
end
when :diagonal
@rows.each_with_index do |row, row_index|
yield row.fetch(row_index){return self}
end
when :off_diagonal
@rows.each_with_index do |row, row_index|
column_count.times do |col_index|
yield row[col_index] unless row_index == col_index
end
end
when :lower
@rows.each_with_index do |row, row_index|
0.upto([row_index, last].min) do |col_index|
yield row[col_index]
end
end
when :strict_lower
@rows.each_with_index do |row, row_index|
[row_index, column_count].min.times do |col_index|
yield row[col_index]
end
end
when :strict_upper
@rows.each_with_index do |row, row_index|
(row_index+1).upto(last) do |col_index|
yield row[col_index]
end
end
when :upper
@rows.each_with_index do |row, row_index|
row_index.upto(last) do |col_index|
yield row[col_index]
end
end
else
raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
end
self
end
Same as each, but the row index and column index in addition to the element
Matrix[ [1,2], [3,4] ].each_with_index do |e, row, col| puts "#{e} at #{row}, #{col}" end # => Prints: # 1 at 0, 0 # 2 at 0, 1 # 3 at 1, 0 # 4 at 1, 1
# File matrix-0.4.2/lib/matrix.rb, line 616
def each_with_index(which = :all) # :yield: e, row, column
return to_enum :each_with_index, which unless block_given?
last = column_count - 1
case which
when :all
@rows.each_with_index do |row, row_index|
row.each_with_index do |e, col_index|
yield e, row_index, col_index
end
end
when :diagonal
@rows.each_with_index do |row, row_index|
yield row.fetch(row_index){return self}, row_index, row_index
end
when :off_diagonal
@rows.each_with_index do |row, row_index|
column_count.times do |col_index|
yield row[col_index], row_index, col_index unless row_index == col_index
end
end
when :lower
@rows.each_with_index do |row, row_index|
0.upto([row_index, last].min) do |col_index|
yield row[col_index], row_index, col_index
end
end
when :strict_lower
@rows.each_with_index do |row, row_index|
[row_index, column_count].min.times do |col_index|
yield row[col_index], row_index, col_index
end
end
when :strict_upper
@rows.each_with_index do |row, row_index|
(row_index+1).upto(last) do |col_index|
yield row[col_index], row_index, col_index
end
end
when :upper
@rows.each_with_index do |row, row_index|
row_index.upto(last) do |col_index|
yield row[col_index], row_index, col_index
end
end
else
raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
end
self
end
Returns the Eigensystem of the matrix; see EigenvalueDecomposition.
m = Matrix[[1, 2], [3, 4]] v, d, v_inv = m.eigensystem d.diagonal? # => true v.inv == v_inv # => true (v * d * v_inv).round(5) == m # => true
# File matrix-0.4.2/lib/matrix.rb, line 1550
def eigensystem
EigenvalueDecomposition.new(self)
end
Deprecated.
Use map(&:to_f)
# File matrix-0.4.2/lib/matrix.rb, line 1692
def elements_to_f
warn "Matrix#elements_to_f is deprecated, use map(&:to_f)", uplevel: 1
map(&:to_f)
end
Deprecated.
Use map(&:to_i)
# File matrix-0.4.2/lib/matrix.rb, line 1700
def elements_to_i
warn "Matrix#elements_to_i is deprecated, use map(&:to_i)", uplevel: 1
map(&:to_i)
end
Deprecated.
Use map(&:to_r)
# File matrix-0.4.2/lib/matrix.rb, line 1708
def elements_to_r
warn "Matrix#elements_to_r is deprecated, use map(&:to_r)", uplevel: 1
map(&:to_r)
end
Returns true if this is an empty matrix, i.e. if the number of rows or the number of columns is 0.
# File matrix-0.4.2/lib/matrix.rb, line 848
def empty?
column_count == 0 || row_count == 0
end
# File matrix-0.4.2/lib/matrix.rb, line 1027
def eql?(other)
return false unless Matrix === other &&
column_count == other.column_count # necessary for empty matrices
rows.eql? other.rows
end
Returns the submatrix obtained by deleting the specified row and column.
Matrix.diagonal(9, 5, -3, 4).first_minor(1, 2) # => 9 0 0 # 0 0 0 # 0 0 4
# File matrix-0.4.2/lib/matrix.rb, line 751
def first_minor(row, column)
raise RuntimeError, "first_minor of empty matrix is not defined" if empty?
unless 0 <= row && row < row_count
raise ArgumentError, "invalid row (#{row.inspect} for 0..#{row_count - 1})"
end
unless 0 <= column && column < column_count
raise ArgumentError, "invalid column (#{column.inspect} for 0..#{column_count - 1})"
end
arrays = to_a
arrays.delete_at(row)
arrays.each do |array|
array.delete_at(column)
end
new_matrix arrays, column_count - 1
end
# File matrix-0.4.2/lib/matrix.rb, line 534
def freeze
@rows.each(&:freeze).freeze
super
end
Hadamard product
Matrix[[1,2], [3,4]].hadamard_product(Matrix[[1,2], [3,2]]) # => 1 4 # 9 8
# File matrix-0.4.2/lib/matrix.rb, line 1167
def hadamard_product(m)
combine(m){|a, b| a * b}
end
Returns a hash-code for the matrix.
# File matrix-0.4.2/lib/matrix.rb, line 1044
def hash
@rows.hash
end
Returns true if this is an hermitian matrix. Raises an error if matrix is not square.
# File matrix-0.4.2/lib/matrix.rb, line 856
def hermitian?
raise ErrDimensionMismatch unless square?
each_with_index(:upper).all? do |e, row, col|
e == rows[col][row].conj
end
end
Returns a new matrix resulting by stacking horizontally the receiver with the given matrices
x = Matrix[[1, 2], [3, 4]] y = Matrix[[5, 6], [7, 8]] x.hstack(y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
# File matrix-0.4.2/lib/matrix.rb, line 1412
def hstack(*matrices)
self.class.hstack(self, *matrices)
end
Returns the imaginary part of the matrix.
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]] # => 1+2i i 0 # 1 2 3 Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].imaginary # => 2i i 0 # 0 0 0
# File matrix-0.4.2/lib/matrix.rb, line 1608
def imaginary
collect(&:imaginary)
end
The index method is specialized to return the index as [row, column] It also accepts an optional selector argument, see each for details.
Matrix[ [1,2], [3,4] ].index(&:even?) # => [0, 1] Matrix[ [1,1], [1,1] ].index(1, :strict_lower) # => [1, 0]
# File matrix-0.4.2/lib/matrix.rb, line 679
def index(*args)
raise ArgumentError, "wrong number of arguments(#{args.size} for 0-2)" if args.size > 2
which = (args.size == 2 || SELECTORS.include?(args.last)) ? args.pop : :all
return to_enum :find_index, which, *args unless block_given? || args.size == 1
if args.size == 1
value = args.first
each_with_index(which) do |e, row_index, col_index|
return row_index, col_index if e == value
end
else
each_with_index(which) do |e, row_index, col_index|
return row_index, col_index if yield e
end
end
nil
end
Overrides Object#inspect
# File matrix-0.4.2/lib/matrix.rb, line 1733
def inspect
if empty?
"#{self.class}.empty(#{row_count}, #{column_count})"
else
"#{self.class}#{@rows.inspect}"
end
end
Returns the inverse of the matrix.
Matrix[[-1, -1], [0, -1]].inverse # => -1 1 # 0 -1
# File matrix-0.4.2/lib/matrix.rb, line 1178
def inverse
raise ErrDimensionMismatch unless square?
self.class.I(row_count).send(:inverse_from, self)
end
Returns the Laplace expansion along given row or column.
Matrix[[7,6], [3,9]].laplace_expansion(column: 1) # => 45 Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0) # => Vector[3, -2]
# File matrix-0.4.2/lib/matrix.rb, line 810
def laplace_expansion(row: nil, column: nil)
num = row || column
if !num || (row && column)
raise ArgumentError, "exactly one the row or column arguments must be specified"
end
raise ErrDimensionMismatch unless square?
raise RuntimeError, "laplace_expansion of empty matrix is not defined" if empty?
unless 0 <= num && num < row_count
raise ArgumentError, "invalid num (#{num.inspect} for 0..#{row_count - 1})"
end
send(row ? :row : :column, num).map.with_index { |e, k|
e * cofactor(*(row ? [num, k] : [k,num]))
}.inject(:+)
end
Returns true if this is a lower triangular matrix.
# File matrix-0.4.2/lib/matrix.rb, line 866
def lower_triangular?
each(:strict_upper).all?(&:zero?)
end
Returns the LUP decomposition of the matrix; see LUPDecomposition.
a = Matrix[[1, 2], [3, 4]] l, u, p = a.lup l.lower_triangular? # => true u.upper_triangular? # => true p.permutation? # => true l * u == p * a # => true a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
# File matrix-0.4.2/lib/matrix.rb, line 1565
def lup
LUPDecomposition.new(self)
end
Returns a section of the matrix. The parameters are either:
start_row, nrows, start_col, ncols; OR
row_range, col_range
Matrix.diagonal(9, 5, -3).minor(0..1, 0..2) # => 9 0 0 # 0 5 0
Like Array#[], negative indices count backward from the end of the row or column (-1 is the last element). Returns nil if the starting row or column is greater than row_count or column_count respectively.
# File matrix-0.4.2/lib/matrix.rb, line 710
def minor(*param)
case param.size
when 2
row_range, col_range = param
from_row = row_range.first
from_row += row_count if from_row < 0
to_row = row_range.end
to_row += row_count if to_row < 0
to_row += 1 unless row_range.exclude_end?
size_row = to_row - from_row
from_col = col_range.first
from_col += column_count if from_col < 0
to_col = col_range.end
to_col += column_count if to_col < 0
to_col += 1 unless col_range.exclude_end?
size_col = to_col - from_col
when 4
from_row, size_row, from_col, size_col = param
return nil if size_row < 0 || size_col < 0
from_row += row_count if from_row < 0
from_col += column_count if from_col < 0
else
raise ArgumentError, param.inspect
end
return nil if from_row > row_count || from_col > column_count || from_row < 0 || from_col < 0
rows = @rows[from_row, size_row].collect{|row|
row[from_col, size_col]
}
new_matrix rows, [column_count - from_col, size_col].min
end
Returns true if this is a normal matrix. Raises an error if matrix is not square.
# File matrix-0.4.2/lib/matrix.rb, line 874
def normal?
raise ErrDimensionMismatch unless square?
rows.each_with_index do |row_i, i|
rows.each_with_index do |row_j, j|
s = 0
rows.each_with_index do |row_k, k|
s += row_i[k] * row_j[k].conj - row_k[i].conj * row_k[j]
end
return false unless s == 0
end
end
true
end
Returns true if this is an orthogonal matrix Raises an error if matrix is not square.
# File matrix-0.4.2/lib/matrix.rb, line 892
def orthogonal?
raise ErrDimensionMismatch unless square?
rows.each_with_index do |row_i, i|
rows.each_with_index do |row_j, j|
s = 0
row_count.times do |k|
s += row_i[k] * row_j[k]
end
return false unless s == (i == j ? 1 : 0)
end
end
true
end
Returns true if this is a permutation matrix Raises an error if matrix is not square.
# File matrix-0.4.2/lib/matrix.rb, line 911
def permutation?
raise ErrDimensionMismatch unless square?
cols = Array.new(column_count)
rows.each_with_index do |row, i|
found = false
row.each_with_index do |e, j|
if e == 1
return false if found || cols[j]
found = cols[j] = true
elsif e != 0
return false
end
end
return false unless found
end
true
end
Returns the rank of the matrix. Beware that using Float values can yield erroneous results because of their lack of precision. Consider using exact types like Rational or BigDecimal instead.
Matrix[[7,6], [3,9]].rank # => 2
# File matrix-0.4.2/lib/matrix.rb, line 1425
def rank
# We currently use Bareiss' multistep integer-preserving gaussian elimination
# (see comments on determinant)
a = to_a
last_column = column_count - 1
last_row = row_count - 1
pivot_row = 0
previous_pivot = 1
0.upto(last_column) do |k|
switch_row = (pivot_row .. last_row).find {|row|
a[row][k] != 0
}
if switch_row
a[switch_row], a[pivot_row] = a[pivot_row], a[switch_row] unless pivot_row == switch_row
pivot = a[pivot_row][k]
(pivot_row+1).upto(last_row) do |i|
ai = a[i]
(k+1).upto(last_column) do |j|
ai[j] = (pivot * ai[j] - ai[k] * a[pivot_row][j]) / previous_pivot
end
end
pivot_row += 1
previous_pivot = pivot
end
end
pivot_row
end
deprecated; use Matrix#rank
# File matrix-0.4.2/lib/matrix.rb, line 1456
def rank_e
warn "Matrix#rank_e is deprecated; use #rank", uplevel: 1
rank
end
Returns the real part of the matrix.
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]] # => 1+2i i 0 # 1 2 3 Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].real # => 1 0 0 # 1 2 3
# File matrix-0.4.2/lib/matrix.rb, line 1622
def real
collect(&:real)
end
Returns true if all entries of the matrix are real.
# File matrix-0.4.2/lib/matrix.rb, line 932
def real?
all?(&:real?)
end
Returns an array containing matrices corresponding to the real and imaginary parts of the matrix
m.rect == [m.real, m.imag] # ==> true for all matrices m
# File matrix-0.4.2/lib/matrix.rb, line 1632
def rect
[real, imag]
end
Returns true if this is a regular (i.e. non-singular) matrix.
# File matrix-0.4.2/lib/matrix.rb, line 939
def regular?
not singular?
end
Returns a new matrix with rotated elements. The argument specifies the rotation (defaults to `:clockwise`):
:clockwise, 1, -3, etc.: “turn right” - first row becomes last column
:half_turn, 2, -2, etc.: first row becomes last row, elements in reverse order
:counter_clockwise, -1, 3: “turn left” - first row becomes first column (but with elements in reverse order)
m = Matrix[ [1, 2], [3, 4] ] r = m.rotate_entries(:clockwise) # => Matrix[[3, 1], [4, 2]]
# File matrix-0.4.2/lib/matrix.rb, line 1473
def rotate_entries(rotation = :clockwise)
rotation %= 4 if rotation.respond_to? :to_int
case rotation
when 0
dup
when 1, :clockwise
new_matrix @rows.transpose.each(&:reverse!), row_count
when 2, :half_turn
new_matrix @rows.map(&:reverse).reverse!, column_count
when 3, :counter_clockwise
new_matrix @rows.transpose.reverse!, row_count
else
raise ArgumentError, "expected #{rotation.inspect} to be one of :clockwise, :counter_clockwise, :half_turn or an integer"
end
end
Returns a matrix with entries rounded to the given precision (see Float#round)
# File matrix-0.4.2/lib/matrix.rb, line 1493
def round(ndigits=0)
map{|e| e.round(ndigits)}
end
Returns row vector number i of the matrix as a Vector (starting at 0 like an array). When a block is given, the elements of that vector are iterated.
# File matrix-0.4.2/lib/matrix.rb, line 463
def row(i, &block) # :yield: e
if block_given?
@rows.fetch(i){return self}.each(&block)
self
else
Vector.elements(@rows.fetch(i){return nil})
end
end
Returns the number of rows.
# File matrix-0.4.2/lib/matrix.rb, line 448
def row_count
@rows.size
end
Returns an array of the row vectors of the matrix. See Vector.
# File matrix-0.4.2/lib/matrix.rb, line 1660
def row_vectors
Array.new(row_count) {|i|
row(i)
}
end
Returns true if this is a singular matrix.
# File matrix-0.4.2/lib/matrix.rb, line 946
def singular?
determinant == 0
end
Returns true if this is a square matrix.
# File matrix-0.4.2/lib/matrix.rb, line 953
def square?
column_count == row_count
end
Returns true if this is a symmetric matrix. Raises an error if matrix is not square.
# File matrix-0.4.2/lib/matrix.rb, line 961
def symmetric?
raise ErrDimensionMismatch unless square?
each_with_index(:strict_upper) do |e, row, col|
return false if e != rows[col][row]
end
true
end
Returns an array of arrays that describe the rows of the matrix.
# File matrix-0.4.2/lib/matrix.rb, line 1685
def to_a
@rows.collect(&:dup)
end
Explicit conversion to a Matrix. Returns self
# File matrix-0.4.2/lib/matrix.rb, line 1678
def to_matrix
self
end
Overrides Object#to_s
# File matrix-0.4.2/lib/matrix.rb, line 1720
def to_s
if empty?
"#{self.class}.empty(#{row_count}, #{column_count})"
else
"#{self.class}[" + @rows.collect{|row|
"[" + row.collect{|e| e.to_s}.join(", ") + "]"
}.join(", ")+"]"
end
end
Returns the trace (sum of diagonal elements) of the matrix.
Matrix[[7,6], [3,9]].trace # => 16
# File matrix-0.4.2/lib/matrix.rb, line 1502
def trace
raise ErrDimensionMismatch unless square?
(0...column_count).inject(0) do |tr, i|
tr + @rows[i][i]
end
end
Returns the transpose of the matrix.
Matrix[[1,2], [3,4], [5,6]] # => 1 2 # 3 4 # 5 6 Matrix[[1,2], [3,4], [5,6]].transpose # => 1 3 5 # 2 4 6
# File matrix-0.4.2/lib/matrix.rb, line 1520
def transpose
return self.class.empty(column_count, 0) if row_count.zero?
new_matrix @rows.transpose, row_count
end
Returns true if this is a unitary matrix Raises an error if matrix is not square.
# File matrix-0.4.2/lib/matrix.rb, line 986
def unitary?
raise ErrDimensionMismatch unless square?
rows.each_with_index do |row_i, i|
rows.each_with_index do |row_j, j|
s = 0
row_count.times do |k|
s += row_i[k].conj * row_j[k]
end
return false unless s == (i == j ? 1 : 0)
end
end
true
end
Returns true if this is an upper triangular matrix.
# File matrix-0.4.2/lib/matrix.rb, line 1003
def upper_triangular?
each(:strict_lower).all?(&:zero?)
end
Returns a new matrix resulting by stacking vertically the receiver with the given matrices
x = Matrix[[1, 2], [3, 4]] y = Matrix[[5, 6], [7, 8]] x.vstack(y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
# File matrix-0.4.2/lib/matrix.rb, line 1534
def vstack(*matrices)
self.class.vstack(self, *matrices)
end
# File matrix-0.4.2/lib/matrix.rb, line 1257
def power_int(exp)
# assumes `exp` is an Integer > 0
#
# Previous algorithm:
# build M**2, M**4 = (M**2)**2, M**8, ... and multiplying those you need
# e.g. M**0b1011 = M**11 = M * M**2 * M**8
# ^ ^
# (highlighted the 2 out of 5 multiplications involving `M * x`)
#
# Current algorithm has same number of multiplications but with lower exponents:
# M**11 = M * (M * M**4)**2
# ^ ^ ^
# (highlighted the 3 out of 5 multiplications involving `M * x`)
#
# This should be faster for all (non nil-potent) matrices.
case
when exp == 1
self
when exp.odd?
self * power_int(exp - 1)
else
sqrt = power_int(exp / 2)
sqrt * sqrt
end
end