Object
The set of all prime numbers.
Prime.each(100) do |prime| p prime #=> 2, 3, 5, 7, 11, ...., 97 end
Prime is Enumerable:
Prime.first 5 # => [2, 3, 5, 7, 11]
For convenience, each instance method of Prime
.instance can be
accessed as a class method of Prime
.
e.g.
Prime.instance.prime?(2) #=> true Prime.prime?(2) #=> true
A “generator” provides an implementation of enumerating pseudo-prime numbers and it remembers the position of enumeration and upper bound. Furthermore, it is an external iterator of prime enumeration which is compatible with an Enumerator.
Prime
::PseudoPrimeGenerator
is the base class for
generators. There are few implementations of generator.
Prime
::EratosthenesGenerator
Uses Eratosthenes’ sieve.
Prime
::TrialDivisionGenerator
Uses the trial division method.
Prime
::Generator23
Generates all positive integers which are not divisible by either 2 or 3. This sequence is very bad as a pseudo-prime sequence. But this is faster and uses much less memory than the other generators. So, it is suitable for factorizing an integer which is not large but has many prime factors. e.g. for #prime? .
Iterates the given block over all prime numbers.
ubound
Optional. An arbitrary positive number. The upper bound of enumeration. The
method enumerates prime numbers infinitely if ubound
is nil.
generator
Optional. An implementation of pseudo-prime generator.
An evaluated value of the given block at the last time. Or an enumerator
which is compatible to an Enumerator
if no block given.
Calls block
once for each prime number, passing the prime as a
parameter.
ubound
Upper bound of prime numbers. The iterator stops after it yields all prime
numbers p <= ubound
.
# File prime.rb, line 139 def each(ubound = nil, generator = EratosthenesGenerator.new, &block) generator.upper_bound = ubound generator.each(&block) end
Returns true if obj
is an Integer
and is prime. Also returns true if obj
is a Module that is an
ancestor of Prime
. Otherwise returns false.
# File prime.rb, line 147 def include?(obj) case obj when Integer prime?(obj) when Module Module.instance_method(:include?).bind(Prime).call(obj) else false end end
Re-composes a prime factorization and returns the product.
For the decomposition:
[[p_1, e_1], [p_2, e_2], ..., [p_n, e_n]],
it returns:
p_1**e_1 * p_2**e_2 * ... * p_n**e_n.
pd
Array of pairs of integers. Each pair consists of a prime number – a prime factor – and a natural number – its exponent (multiplicity).
Prime.int_from_prime_division([[3, 2], [5, 1]]) #=> 45 3**2 * 5 #=> 45
# File prime.rb, line 194 def int_from_prime_division(pd) pd.inject(1){|value, (prime, index)| value * prime**index } end
Returns true if value
is a prime number, else returns false.
value
an arbitrary integer to be checked.
generator
optional. A pseudo-prime generator.
# File prime.rb, line 164 def prime?(value, generator = Prime::Generator23.new) raise ArgumentError, "Expected a prime generator, got #{generator}" unless generator.respond_to? :each raise ArgumentError, "Expected an integer, got #{value}" unless value.respond_to?(:integer?) && value.integer? return false if value < 2 generator.each do |num| q,r = value.divmod num return true if q < num return false if r == 0 end end
Returns the factorization of value
.
For an arbitrary integer:
p_1**e_1 * p_2**e_2 * ... * p_n**e_n,
#prime_division returns an array of pairs of integers:
[[p_1, e_1], [p_2, e_2], ..., [p_n, e_n]].
Each pair consists of a prime number – a prime factor – and a natural number – its exponent (multiplicity).
value
An arbitrary integer.
generator
Optional. A pseudo-prime generator. generator
.succ must return
the next pseudo-prime number in ascending order. It must generate all prime
numbers, but may also generate non-prime numbers, too.
ZeroDivisionError
when value
is zero.
Prime.prime_division(45) #=> [[3, 2], [5, 1]] 3**2 * 5 #=> 45
# File prime.rb, line 229 def prime_division(value, generator = Prime::Generator23.new) raise ZeroDivisionError if value == 0 if value < 0 value = -value pv = [[-1, 1]] else pv = [] end generator.each do |prime| count = 0 while (value1, mod = value.divmod(prime) mod) == 0 value = value1 count += 1 end if count != 0 pv.push [prime, count] end break if value1 <= prime end if value > 1 pv.push [value, 1] end pv end