frozen_string_literal: true
CMath is a library that provides trigonometric and transcendental functions for complex numbers. The functions in this module accept integers, floating-point numbers or complex numbers as arguments.
Note that the selection of functions is similar, but not identical, to that in module math. The reason for having two modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they are. They would rather have Math.sqrt(-1) raise an exception than return a complex number.
For more information you can see Complex class.
To start using this library, simply require cmath library:
require "cmath"
Returns the arc cosine of z
CMath.acos(1 + 1i) #=> (0.9045568943023813-1.0612750619050357i)
# File cmath.rb, line 281 def acos(z) begin if z.real? and z >= -1 and z <= 1 RealMath.acos(z) else (-1.0).i * log(z + 1.0.i * sqrt(1.0 - z * z)) end rescue NoMethodError handle_no_method_error end end
returns the inverse hyperbolic cosine of z
CMath.acosh(1 + 1i) #=> (1.0612750619050357+0.9045568943023813i)
# File cmath.rb, line 346 def acosh(z) begin if z.real? and z >= 1 RealMath.acosh(z) else log(z + sqrt(z * z - 1.0)) end rescue NoMethodError handle_no_method_error end end
Returns the arc sine of z
CMath.asin(1 + 1i) #=> (0.6662394324925153+1.0612750619050355i)
# File cmath.rb, line 265 def asin(z) begin if z.real? and z >= -1 and z <= 1 RealMath.asin(z) else (-1.0).i * log(1.0.i * z + sqrt(1.0 - z * z)) end rescue NoMethodError handle_no_method_error end end
returns the inverse hyperbolic sine of z
CMath.asinh(1 + 1i) #=> (1.0612750619050357+0.6662394324925153i)
# File cmath.rb, line 330 def asinh(z) begin if z.real? RealMath.asinh(z) else log(z + sqrt(1.0 + z * z)) end rescue NoMethodError handle_no_method_error end end
Returns the arc tangent of z
CMath.atan(1 + 1i) #=> (1.0172219678978514+0.4023594781085251i)
# File cmath.rb, line 297 def atan(z) begin if z.real? RealMath.atan(z) else 1.0.i * log((1.0.i + z) / (1.0.i - z)) / 2.0 end rescue NoMethodError handle_no_method_error end end
returns the arc tangent of y
divided by x
using
the signs of y
and x
to determine the quadrant
CMath.atan2(1 + 1i, 0) #=> (1.5707963267948966+0.0i)
# File cmath.rb, line 314 def atan2(y,x) begin if y.real? and x.real? RealMath.atan2(y,x) else (-1.0).i * log((x + 1.0.i * y) / sqrt(x * x + y * y)) end rescue NoMethodError handle_no_method_error end end
returns the inverse hyperbolic tangent of z
CMath.atanh(1 + 1i) #=> (0.4023594781085251+1.0172219678978514i)
# File cmath.rb, line 362 def atanh(z) begin if z.real? and z >= -1 and z <= 1 RealMath.atanh(z) else log((1.0 + z) / (1.0 - z)) / 2.0 end rescue NoMethodError handle_no_method_error end end
Returns the principal value of the cube root of z
CMath.cbrt(1 + 4i) #=> (1.449461632813119+0.6858152562177092i)
# File cmath.rb, line 157 def cbrt(z) z ** (1.0/3) end
Returns the cosine of z
, where z
is given in
radians
CMath.cos(1 + 1i) #=> (0.8337300251311491-0.9888977057628651i)
# File cmath.rb, line 182 def cos(z) begin if z.real? RealMath.cos(z) else Complex(RealMath.cos(z.real) * RealMath.cosh(z.imag), -RealMath.sin(z.real) * RealMath.sinh(z.imag)) end rescue NoMethodError handle_no_method_error end end
Returns the hyperbolic cosine of z
, where z
is
given in radians
CMath.cosh(1 + 1i) #=> (0.8337300251311491+0.9888977057628651i)
# File cmath.rb, line 232 def cosh(z) begin if z.real? RealMath.cosh(z) else Complex(RealMath.cosh(z.real) * RealMath.cos(z.imag), RealMath.sinh(z.real) * RealMath.sin(z.imag)) end rescue NoMethodError handle_no_method_error end end
Math::E raised to the z
power
CMath.exp(1.i * Math::PI) #=> (-1.0+1.2246467991473532e-16i)
# File cmath.rb, line 62 def exp(z) begin if z.real? RealMath.exp(z) else ere = RealMath.exp(z.real) Complex(ere * RealMath.cos(z.imag), ere * RealMath.sin(z.imag)) end rescue NoMethodError handle_no_method_error end end
Returns the natural logarithm of Complex. If a second argument is given, it will be the base of logarithm.
CMath.log(1 + 4i) #=> (1.416606672028108+1.3258176636680326i) CMath.log(1 + 4i, 10) #=> (0.6152244606891369+0.5757952953408879i)
# File cmath.rb, line 82 def log(z, b=::Math::E) begin if z.real? && z >= 0 && b >= 0 RealMath.log(z, b) else Complex(RealMath.log(z.abs), z.arg) / log(b) end rescue NoMethodError handle_no_method_error end end
Returns the base 10 logarithm of z
CMath.log10(-1) #=> (0.0+1.3643763538418412i)
# File cmath.rb, line 114 def log10(z) begin if z.real? and z >= 0 RealMath.log10(z) else log(z) / RealMath.log(10) end rescue NoMethodError handle_no_method_error end end
Returns the base 2 logarithm of z
CMath.log2(-1) => (0.0+4.532360141827194i)
# File cmath.rb, line 98 def log2(z) begin if z.real? and z >= 0 RealMath.log2(z) else log(z) / RealMath.log(2) end rescue NoMethodError handle_no_method_error end end
Returns the sine of z
, where z
is given in
radians
CMath.sin(1 + 1i) #=> (1.2984575814159773+0.6349639147847361i)
# File cmath.rb, line 165 def sin(z) begin if z.real? RealMath.sin(z) else Complex(RealMath.sin(z.real) * RealMath.cosh(z.imag), RealMath.cos(z.real) * RealMath.sinh(z.imag)) end rescue NoMethodError handle_no_method_error end end
Returns the hyperbolic sine of z
, where z
is
given in radians
CMath.sinh(1 + 1i) #=> (0.6349639147847361+1.2984575814159773i)
# File cmath.rb, line 215 def sinh(z) begin if z.real? RealMath.sinh(z) else Complex(RealMath.sinh(z.real) * RealMath.cos(z.imag), RealMath.cosh(z.real) * RealMath.sin(z.imag)) end rescue NoMethodError handle_no_method_error end end
Returns the non-negative square root of Complex.
CMath.sqrt(-1 + 0i) #=> 0.0+1.0i
# File cmath.rb, line 130 def sqrt(z) begin if z.real? if z < 0 Complex(0, RealMath.sqrt(-z)) else RealMath.sqrt(z) end else if z.imag < 0 || (z.imag == 0 && z.imag.to_s[0] == '-') sqrt(z.conjugate).conjugate else r = z.abs x = z.real Complex(RealMath.sqrt((r + x) / 2.0), RealMath.sqrt((r - x) / 2.0)) end end rescue NoMethodError handle_no_method_error end end
Returns the tangent of z
, where z
is given in
radians
CMath.tan(1 + 1i) #=> (0.27175258531951174+1.0839233273386943i)
# File cmath.rb, line 199 def tan(z) begin if z.real? RealMath.tan(z) else sin(z) / cos(z) end rescue NoMethodError handle_no_method_error end end
Returns the hyperbolic tangent of z
, where z
is
given in radians
CMath.tanh(1 + 1i) #=> (1.0839233273386943+0.27175258531951174i)
# File cmath.rb, line 249 def tanh(z) begin if z.real? RealMath.tanh(z) else sinh(z) / cosh(z) end rescue NoMethodError handle_no_method_error end end