In Files

  • cmath.rb

Class/Module Index [+]

Quicksearch

CMath

frozen_string_literal: true

Trigonometric and transcendental functions for complex numbers.

CMath is a library that provides trigonometric and transcendental functions for complex numbers. The functions in this module accept integers, floating-point numbers or complex numbers as arguments.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for having two modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they are. They would rather have Math.sqrt(-1) raise an exception than return a complex number.

For more information you can see Complex class.

Usage

To start using this library, simply require cmath library:

require "cmath"

Public Class Methods

acos(z) click to toggle source

Returns the arc cosine of z

CMath.acos(1 + 1i) #=> (0.9045568943023813-1.0612750619050357i)
 
               # File cmath.rb, line 281
def acos(z)
  begin
    if z.real? and z >= -1 and z <= 1
      RealMath.acos(z)
    else
      (-1.0).i * log(z + 1.0.i * sqrt(1.0 - z * z))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
            
acosh(z) click to toggle source

returns the inverse hyperbolic cosine of z

CMath.acosh(1 + 1i) #=> (1.0612750619050357+0.9045568943023813i)
 
               # File cmath.rb, line 346
def acosh(z)
  begin
    if z.real? and z >= 1
      RealMath.acosh(z)
    else
      log(z + sqrt(z * z - 1.0))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
            
asin(z) click to toggle source

Returns the arc sine of z

CMath.asin(1 + 1i) #=> (0.6662394324925153+1.0612750619050355i)
 
               # File cmath.rb, line 265
def asin(z)
  begin
    if z.real? and z >= -1 and z <= 1
      RealMath.asin(z)
    else
      (-1.0).i * log(1.0.i * z + sqrt(1.0 - z * z))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
            
asinh(z) click to toggle source

returns the inverse hyperbolic sine of z

CMath.asinh(1 + 1i) #=> (1.0612750619050357+0.6662394324925153i)
 
               # File cmath.rb, line 330
def asinh(z)
  begin
    if z.real?
      RealMath.asinh(z)
    else
      log(z + sqrt(1.0 + z * z))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
            
atan(z) click to toggle source

Returns the arc tangent of z

CMath.atan(1 + 1i) #=> (1.0172219678978514+0.4023594781085251i)
 
               # File cmath.rb, line 297
def atan(z)
  begin
    if z.real?
      RealMath.atan(z)
    else
      1.0.i * log((1.0.i + z) / (1.0.i - z)) / 2.0
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
            
atan2(y,x) click to toggle source

returns the arc tangent of y divided by x using the signs of y and x to determine the quadrant

CMath.atan2(1 + 1i, 0) #=> (1.5707963267948966+0.0i)
 
               # File cmath.rb, line 314
def atan2(y,x)
  begin
    if y.real? and x.real?
      RealMath.atan2(y,x)
    else
      (-1.0).i * log((x + 1.0.i * y) / sqrt(x * x + y * y))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
            
atanh(z) click to toggle source

returns the inverse hyperbolic tangent of z

CMath.atanh(1 + 1i) #=> (0.4023594781085251+1.0172219678978514i)
 
               # File cmath.rb, line 362
def atanh(z)
  begin
    if z.real? and z >= -1 and z <= 1
      RealMath.atanh(z)
    else
      log((1.0 + z) / (1.0 - z)) / 2.0
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
            
cbrt(z) click to toggle source

Returns the principal value of the cube root of z

CMath.cbrt(1 + 4i) #=> (1.449461632813119+0.6858152562177092i)
 
               # File cmath.rb, line 157
def cbrt(z)
  z ** (1.0/3)
end
            
cos(z) click to toggle source

Returns the cosine of z, where z is given in radians

CMath.cos(1 + 1i) #=> (0.8337300251311491-0.9888977057628651i)
 
               # File cmath.rb, line 182
def cos(z)
  begin
    if z.real?
      RealMath.cos(z)
    else
      Complex(RealMath.cos(z.real) * RealMath.cosh(z.imag),
              -RealMath.sin(z.real) * RealMath.sinh(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
            
cosh(z) click to toggle source

Returns the hyperbolic cosine of z, where z is given in radians

CMath.cosh(1 + 1i) #=> (0.8337300251311491+0.9888977057628651i)
 
               # File cmath.rb, line 232
def cosh(z)
  begin
    if z.real?
      RealMath.cosh(z)
    else
      Complex(RealMath.cosh(z.real) * RealMath.cos(z.imag),
              RealMath.sinh(z.real) * RealMath.sin(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
            
exp(z) click to toggle source

Math::E raised to the z power

CMath.exp(1.i * Math::PI) #=> (-1.0+1.2246467991473532e-16i)
 
               # File cmath.rb, line 62
def exp(z)
  begin
    if z.real?
      RealMath.exp(z)
    else
      ere = RealMath.exp(z.real)
      Complex(ere * RealMath.cos(z.imag),
              ere * RealMath.sin(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
            
log(z, b=::Math::E) click to toggle source

Returns the natural logarithm of Complex. If a second argument is given, it will be the base of logarithm.

CMath.log(1 + 4i)     #=> (1.416606672028108+1.3258176636680326i)
CMath.log(1 + 4i, 10) #=> (0.6152244606891369+0.5757952953408879i)
 
               # File cmath.rb, line 82
def log(z, b=::Math::E)
  begin
    if z.real? && z >= 0 && b >= 0
      RealMath.log(z, b)
    else
      Complex(RealMath.log(z.abs), z.arg) / log(b)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
            
log10(z) click to toggle source

Returns the base 10 logarithm of z

CMath.log10(-1) #=> (0.0+1.3643763538418412i)
 
               # File cmath.rb, line 114
def log10(z)
  begin
    if z.real? and z >= 0
      RealMath.log10(z)
    else
      log(z) / RealMath.log(10)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
            
log2(z) click to toggle source

Returns the base 2 logarithm of z

CMath.log2(-1) => (0.0+4.532360141827194i)
 
               # File cmath.rb, line 98
def log2(z)
  begin
    if z.real? and z >= 0
      RealMath.log2(z)
    else
      log(z) / RealMath.log(2)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
            
sin(z) click to toggle source

Returns the sine of z, where z is given in radians

CMath.sin(1 + 1i) #=> (1.2984575814159773+0.6349639147847361i)
 
               # File cmath.rb, line 165
def sin(z)
  begin
    if z.real?
      RealMath.sin(z)
    else
      Complex(RealMath.sin(z.real) * RealMath.cosh(z.imag),
              RealMath.cos(z.real) * RealMath.sinh(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
            
sinh(z) click to toggle source

Returns the hyperbolic sine of z, where z is given in radians

CMath.sinh(1 + 1i) #=> (0.6349639147847361+1.2984575814159773i)
 
               # File cmath.rb, line 215
def sinh(z)
  begin
    if z.real?
      RealMath.sinh(z)
    else
      Complex(RealMath.sinh(z.real) * RealMath.cos(z.imag),
              RealMath.cosh(z.real) * RealMath.sin(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
            
sqrt(z) click to toggle source

Returns the non-negative square root of Complex.

CMath.sqrt(-1 + 0i) #=> 0.0+1.0i
 
               # File cmath.rb, line 130
def sqrt(z)
  begin
    if z.real?
      if z < 0
        Complex(0, RealMath.sqrt(-z))
      else
        RealMath.sqrt(z)
      end
    else
      if z.imag < 0 ||
          (z.imag == 0 && z.imag.to_s[0] == '-')
        sqrt(z.conjugate).conjugate
      else
        r = z.abs
        x = z.real
        Complex(RealMath.sqrt((r + x) / 2.0), RealMath.sqrt((r - x) / 2.0))
      end
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
            
tan(z) click to toggle source

Returns the tangent of z, where z is given in radians

CMath.tan(1 + 1i) #=> (0.27175258531951174+1.0839233273386943i)
 
               # File cmath.rb, line 199
def tan(z)
  begin
    if z.real?
      RealMath.tan(z)
    else
      sin(z) / cos(z)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
            
tanh(z) click to toggle source

Returns the hyperbolic tangent of z, where z is given in radians

CMath.tanh(1 + 1i) #=> (1.0839233273386943+0.27175258531951174i)
 
               # File cmath.rb, line 249
def tanh(z)
  begin
    if z.real?
      RealMath.tanh(z)
    else
      sinh(z) / cosh(z)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end