Support for the Ruby 2.4 series has ended. See here for reference.
Object
The Matrix class represents a mathematical matrix. It provides methods for creating matrices, operating on them arithmetically and algebraically, and determining their mathematical properties (trace, rank, inverse, determinant).
To create a matrix:
Matrix.rows(rows, copy = true)
Matrix.build(row_count, column_count, &block)
Matrix.scalar(n, value)
Matrix.I(n)
To access Matrix elements/columns/rows/submatrices/properties:
[](i, j)
first_minor(row, column)
cofactor(row, column)
laplace_expansion(row_or_column: num)
cofactor_expansion(row_or_column: num)
Properties of a matrix:
Matrix arithmetic:
Matrix functions:
Matrix decompositions:
Complex arithmetic:
conj
conjugate
imag
imaginary
real
rect
rectangular
Conversion to other data types:
String representations:
Creates a matrix where each argument is a row.
Matrix[ [25, 93], [-1, 66] ]
   =>  25 93
       -1 66
            
            
             
               # File matrix.rb, line 153
def Matrix.[](*rows)
  rows(rows, false)
end
             
            Creates a matrix of size row_count x column_count. It fills the values by calling the given block, passing the current row and column. Returns an enumerator if no block is given.
m = Matrix.build(2, 4) {|row, col| col - row }
  => Matrix[[0, 1, 2, 3], [-1, 0, 1, 2]]
m = Matrix.build(3) { rand }
  => a 3x3 matrix with random elements
            
            
             
               # File matrix.rb, line 198
def Matrix.build(row_count, column_count = row_count)
  row_count = CoercionHelper.coerce_to_int(row_count)
  column_count = CoercionHelper.coerce_to_int(column_count)
  raise ArgumentError if row_count < 0 || column_count < 0
  return to_enum :build, row_count, column_count unless block_given?
  rows = Array.new(row_count) do |i|
    Array.new(column_count) do |j|
      yield i, j
    end
  end
  new rows, column_count
end
             
            Creates a single-column matrix where the values of that column are as given in column.
Matrix.column_vector([4,5,6])
  => 4
     5
     6
            
            
             
               # File matrix.rb, line 284
def Matrix.column_vector(column)
  column = convert_to_array(column)
  new [column].transpose, 1
end
             
            Creates a matrix using columns as an array of column vectors.
Matrix.columns([[25, 93], [-1, 66]])
   =>  25 -1
       93 66
            
            
             
               # File matrix.rb, line 183
def Matrix.columns(columns)
  rows(columns, false).transpose
end
             
            Creates a matrix where the diagonal elements are composed of values.
Matrix.diagonal(9, 5, -3)
  =>  9  0  0
      0  5  0
      0  0 -3
            
            
             
               # File matrix.rb, line 218
def Matrix.diagonal(*values)
  size = values.size
  return Matrix.empty if size == 0
  rows = Array.new(size) {|j|
    row = Array.new(size, 0)
    row[j] = values[j]
    row
  }
  new rows
end
             
            Creates a empty matrix of row_count x column_count. At least one of row_count or column_count must be 0.
m = Matrix.empty(2, 0) m == Matrix[ [], [] ] => true n = Matrix.empty(0, 3) n == Matrix.columns([ [], [], [] ]) => true m * n => Matrix[[0, 0, 0], [0, 0, 0]]
 
               # File matrix.rb, line 302
def Matrix.empty(row_count = 0, column_count = 0)
  raise ArgumentError, "One size must be 0" if column_count != 0 && row_count != 0
  raise ArgumentError, "Negative size" if column_count < 0 || row_count < 0
  new([[]]*row_count, column_count)
end
             
            Create a matrix by stacking matrices horizontally
x = Matrix[[1, 2], [3, 4]] y = Matrix[[5, 6], [7, 8]] Matrix.hstack(x, y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
 
               # File matrix.rb, line 337
def Matrix.hstack(x, *matrices)
  raise TypeError, "Expected a Matrix, got a #{x.class}" unless x.is_a?(Matrix)
  result = x.send(:rows).map(&:dup)
  total_column_count = x.column_count
  matrices.each do |m|
    raise TypeError, "Expected a Matrix, got a #{m.class}" unless m.is_a?(Matrix)
    if m.row_count != x.row_count
      raise ErrDimensionMismatch, "The given matrices must have #{x.row_count} rows, but one has #{m.row_count}"
    end
    result.each_with_index do |row, i|
      row.concat m.send(:rows)[i]
    end
    total_column_count += m.column_count
  end
  new result, total_column_count
end
             
            Creates an n by n identity matrix.
Matrix.identity(2)
  => 1 0
     0 1
            
            
             
               # File matrix.rb, line 246
def Matrix.identity(n)
  scalar(n, 1)
end
             
            Matrix.new is private; use Matrix.rows, columns, [], etc… to create.
 
               # File matrix.rb, line 357
def initialize(rows, column_count = rows[0].size)
  # No checking is done at this point. rows must be an Array of Arrays.
  # column_count must be the size of the first row, if there is one,
  # otherwise it *must* be specified and can be any integer >= 0
  @rows = rows
  @column_count = column_count
end
             
            Creates a single-row matrix where the values of that row are as given in row.
Matrix.row_vector([4,5,6]) => 4 5 6
 
               # File matrix.rb, line 271
def Matrix.row_vector(row)
  row = convert_to_array(row)
  new [row]
end
             
            Creates a matrix where rows is an array of arrays, each of which is a row of the matrix.  If the optional argument copy is false, use the given arrays as the internal structure of the matrix without copying.
Matrix.rows([[25, 93], [-1, 66]])
   =>  25 93
       -1 66
            
            
             
               # File matrix.rb, line 165
def Matrix.rows(rows, copy = true)
  rows = convert_to_array(rows, copy)
  rows.map! do |row|
    convert_to_array(row, copy)
  end
  size = (rows[0] || []).size
  rows.each do |row|
    raise ErrDimensionMismatch, "row size differs (#{row.size} should be #{size})" unless row.size == size
  end
  new rows, size
end
             
            Creates an n by n diagonal matrix where each diagonal element is value.
Matrix.scalar(2, 5)
  => 5 0
     0 5
            
            
             
               # File matrix.rb, line 236
def Matrix.scalar(n, value)
  diagonal(*Array.new(n, value))
end
             
            Create a matrix by stacking matrices vertically
x = Matrix[[1, 2], [3, 4]] y = Matrix[[5, 6], [7, 8]] Matrix.vstack(x, y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
 
               # File matrix.rb, line 316
def Matrix.vstack(x, *matrices)
  raise TypeError, "Expected a Matrix, got a #{x.class}" unless x.is_a?(Matrix)
  result = x.send(:rows).map(&:dup)
  matrices.each do |m|
    raise TypeError, "Expected a Matrix, got a #{m.class}" unless m.is_a?(Matrix)
    if m.column_count != x.column_count
      raise ErrDimensionMismatch, "The given matrices must have #{x.column_count} columns, but one has #{m.column_count}"
    end
    result.concat(m.send(:rows))
  end
  new result, x.column_count
end
             
            Matrix multiplication.
Matrix[[2,4], [6,8]] * Matrix.identity(2)
  => 2 4
     6 8
            
            
             
               # File matrix.rb, line 954
def *(m) # m is matrix or vector or number
  case(m)
  when Numeric
    rows = @rows.collect {|row|
      row.collect {|e| e * m }
    }
    return new_matrix rows, column_count
  when Vector
    m = self.class.column_vector(m)
    r = self * m
    return r.column(0)
  when Matrix
    Matrix.Raise ErrDimensionMismatch if column_count != m.row_count
    rows = Array.new(row_count) {|i|
      Array.new(m.column_count) {|j|
        (0 ... column_count).inject(0) do |vij, k|
          vij + self[i, k] * m[k, j]
        end
      }
    }
    return new_matrix rows, m.column_count
  else
    return apply_through_coercion(m, __method__)
  end
end
             
            Matrix exponentiation. Equivalent to multiplying the matrix by itself N times. Non integer exponents will be handled by diagonalizing the matrix.
Matrix[[7,6], [3,9]] ** 2
  => 67 96
     48 99
            
            
             
               # File matrix.rb, line 1121
def **(other)
  case other
  when Integer
    x = self
    if other <= 0
      x = self.inverse
      return self.class.identity(self.column_count) if other == 0
      other = -other
    end
    z = nil
    loop do
      z = z ? z * x : x if other[0] == 1
      return z if (other >>= 1).zero?
      x *= x
    end
  when Numeric
    v, d, v_inv = eigensystem
    v * self.class.diagonal(*d.each(:diagonal).map{|e| e ** other}) * v_inv
  else
    Matrix.Raise ErrOperationNotDefined, "**", self.class, other.class
  end
end
             
            Matrix addition.
Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]]
  =>  6  0
     -4 12
            
            
             
               # File matrix.rb, line 987
def +(m)
  case m
  when Numeric
    Matrix.Raise ErrOperationNotDefined, "+", self.class, m.class
  when Vector
    m = self.class.column_vector(m)
  when Matrix
  else
    return apply_through_coercion(m, __method__)
  end
  Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count
  rows = Array.new(row_count) {|i|
    Array.new(column_count) {|j|
      self[i, j] + m[i, j]
    }
  }
  new_matrix rows, column_count
end
             
            Matrix subtraction.
Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]]
  => -8  2
      8  1
            
            
             
               # File matrix.rb, line 1014
def -(m)
  case m
  when Numeric
    Matrix.Raise ErrOperationNotDefined, "-", self.class, m.class
  when Vector
    m = self.class.column_vector(m)
  when Matrix
  else
    return apply_through_coercion(m, __method__)
  end
  Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count
  rows = Array.new(row_count) {|i|
    Array.new(column_count) {|j|
      self[i, j] - m[i, j]
    }
  }
  new_matrix rows, column_count
end
             
            Matrix division (multiplication by the inverse).
Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]]
  => -7  1
     -3 -6
            
            
             
               # File matrix.rb, line 1041
def /(other)
  case other
  when Numeric
    rows = @rows.collect {|row|
      row.collect {|e| e / other }
    }
    return new_matrix rows, column_count
  when Matrix
    return self * other.inverse
  else
    return apply_through_coercion(other, __method__)
  end
end
             
            Returns true if and only if the two matrices contain equal elements.
 
               # File matrix.rb, line 916
def ==(other)
  return false unless Matrix === other &&
                      column_count == other.column_count # necessary for empty matrices
  rows == other.rows
end
             
            Returns element (i,j) of the matrix.  That is: row i, column j.
 
               # File matrix.rb, line 373
def [](i, j)
  @rows.fetch(i){return nil}[j]
end
             
            Returns the adjugate of the matrix.
Matrix[ [7,6],[3,9] ].adjugate
  => 9 -6
     -3 7
            
            
             
               # File matrix.rb, line 702
def adjugate
  Matrix.Raise ErrDimensionMismatch unless square?
  Matrix.build(row_count, column_count) do |row, column|
    cofactor(column, row)
  end
end
             
            Returns a clone of the matrix, so that the contents of each do not reference identical objects. There should be no good reason to do this since Matrices are immutable.
 
               # File matrix.rb, line 933
def clone
  new_matrix @rows.map(&:dup), column_count
end
             
            The coerce method provides support for Ruby type coercion. This coercion mechanism is used by Ruby to handle mixed-type numeric operations: it is intended to find a compatible common type between the two operands of the operator. See also Numeric#coerce.
 
               # File matrix.rb, line 1458
def coerce(other)
  case other
  when Numeric
    return Scalar.new(other), self
  else
    raise TypeError, "#{self.class} can't be coerced into #{other.class}"
  end
end
             
            Returns the (row, column) cofactor which is obtained by multiplying the first minor by (-1)**(row + column).
Matrix.diagonal(9, 5, -3, 4).cofactor(1, 1) => -108
 
               # File matrix.rb, line 687
def cofactor(row, column)
  raise RuntimeError, "cofactor of empty matrix is not defined" if empty?
  Matrix.Raise ErrDimensionMismatch unless square?
  det_of_minor = first_minor(row, column).determinant
  det_of_minor * (-1) ** (row + column)
end
             
            Returns a matrix that is the result of iteration of the given block over all elements of the matrix.
Matrix[ [1,2], [3,4] ].collect { |e| e**2 }
  => 1  4
     9 16
            
            
             
               # File matrix.rb, line 441
def collect(&block) # :yield: e
  return to_enum(:collect) unless block_given?
  rows = @rows.collect{|row| row.collect(&block)}
  new_matrix rows, column_count
end
             
            Returns column vector number j of the matrix as a Vector (starting at 0 like an array).  When a block is given, the elements of that vector are iterated.
 
               # File matrix.rb, line 418
def column(j) # :yield: e
  if block_given?
    return self if j >= column_count || j < -column_count
    row_count.times do |i|
      yield @rows[i][j]
    end
    self
  else
    return nil if j >= column_count || j < -column_count
    col = Array.new(row_count) {|i|
      @rows[i][j]
    }
    Vector.elements(col, false)
  end
end
             
            Returns an array of the column vectors of the matrix.  See Vector.
 
               # File matrix.rb, line 1479
def column_vectors
  Array.new(column_count) {|i|
    column(i)
  }
end
             
            Returns the conjugate of the matrix.
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
  => 1+2i   i  0
        1   2  3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate
  => 1-2i  -i  0
        1   2  3
            
            
             
               # File matrix.rb, line 1404
def conjugate
  collect(&:conjugate)
end
             
            Returns the determinant of the matrix.
Beware that using Float values can yield erroneous results because of their lack of precision. Consider using exact types like Rational or BigDecimal instead.
Matrix[[7,6], [3,9]].determinant => 45
 
               # File matrix.rb, line 1166
def determinant
  Matrix.Raise ErrDimensionMismatch unless square?
  m = @rows
  case row_count
    # Up to 4x4, give result using Laplacian expansion by minors.
    # This will typically be faster, as well as giving good results
    # in case of Floats
  when 0
    +1
  when 1
    + m[0][0]
  when 2
    + m[0][0] * m[1][1] - m[0][1] * m[1][0]
  when 3
    m0, m1, m2 = m
    + m0[0] * m1[1] * m2[2] - m0[0] * m1[2] * m2[1] \
    - m0[1] * m1[0] * m2[2] + m0[1] * m1[2] * m2[0] \
    + m0[2] * m1[0] * m2[1] - m0[2] * m1[1] * m2[0]
  when 4
    m0, m1, m2, m3 = m
    + m0[0] * m1[1] * m2[2] * m3[3] - m0[0] * m1[1] * m2[3] * m3[2] \
    - m0[0] * m1[2] * m2[1] * m3[3] + m0[0] * m1[2] * m2[3] * m3[1] \
    + m0[0] * m1[3] * m2[1] * m3[2] - m0[0] * m1[3] * m2[2] * m3[1] \
    - m0[1] * m1[0] * m2[2] * m3[3] + m0[1] * m1[0] * m2[3] * m3[2] \
    + m0[1] * m1[2] * m2[0] * m3[3] - m0[1] * m1[2] * m2[3] * m3[0] \
    - m0[1] * m1[3] * m2[0] * m3[2] + m0[1] * m1[3] * m2[2] * m3[0] \
    + m0[2] * m1[0] * m2[1] * m3[3] - m0[2] * m1[0] * m2[3] * m3[1] \
    - m0[2] * m1[1] * m2[0] * m3[3] + m0[2] * m1[1] * m2[3] * m3[0] \
    + m0[2] * m1[3] * m2[0] * m3[1] - m0[2] * m1[3] * m2[1] * m3[0] \
    - m0[3] * m1[0] * m2[1] * m3[2] + m0[3] * m1[0] * m2[2] * m3[1] \
    + m0[3] * m1[1] * m2[0] * m3[2] - m0[3] * m1[1] * m2[2] * m3[0] \
    - m0[3] * m1[2] * m2[0] * m3[1] + m0[3] * m1[2] * m2[1] * m3[0]
  else
    # For bigger matrices, use an efficient and general algorithm.
    # Currently, we use the Gauss-Bareiss algorithm
    determinant_bareiss
  end
end
             
            deprecated; use Matrix#determinant
 
               # File matrix.rb, line 1248
def determinant_e
  warn "#{caller(1)[0]}: warning: Matrix#determinant_e is deprecated; use #determinant"
  determinant
end
             
            Returns true if this is a diagonal matrix. Raises an error if matrix is not square.
 
               # File matrix.rb, line 748
def diagonal?
  Matrix.Raise ErrDimensionMismatch unless square?
  each(:off_diagonal).all?(&:zero?)
end
             
            Yields all elements of the matrix, starting with those of the first row, or returns an Enumerator if no block given. Elements can be restricted by passing an argument:
:all (default): yields all elements
:diagonal: yields only elements on the diagonal
:off_diagonal: yields all elements except on the diagonal
:lower: yields only elements on or below the diagonal
:strict_lower: yields only elements below the diagonal
:strict_upper: yields only elements above the diagonal
:upper: yields only elements on or above the diagonal
Matrix[ [1,2], [3,4] ].each { |e| puts e }
# => prints the numbers 1 to 4
Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3]
 
               # File matrix.rb, line 464
def each(which = :all) # :yield: e
  return to_enum :each, which unless block_given?
  last = column_count - 1
  case which
  when :all
    block = Proc.new
    @rows.each do |row|
      row.each(&block)
    end
  when :diagonal
    @rows.each_with_index do |row, row_index|
      yield row.fetch(row_index){return self}
    end
  when :off_diagonal
    @rows.each_with_index do |row, row_index|
      column_count.times do |col_index|
        yield row[col_index] unless row_index == col_index
      end
    end
  when :lower
    @rows.each_with_index do |row, row_index|
      0.upto([row_index, last].min) do |col_index|
        yield row[col_index]
      end
    end
  when :strict_lower
    @rows.each_with_index do |row, row_index|
      [row_index, column_count].min.times do |col_index|
        yield row[col_index]
      end
    end
  when :strict_upper
    @rows.each_with_index do |row, row_index|
      (row_index+1).upto(last) do |col_index|
        yield row[col_index]
      end
    end
  when :upper
    @rows.each_with_index do |row, row_index|
      row_index.upto(last) do |col_index|
        yield row[col_index]
      end
    end
  else
    raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
  end
  self
end
             
            Same as each, but the row index and column index in addition to the element
Matrix[ [1,2], [3,4] ].each_with_index do |e, row, col| puts "#{e} at #{row}, #{col}" end # => Prints: # 1 at 0, 0 # 2 at 0, 1 # 3 at 1, 0 # 4 at 1, 1
 
               # File matrix.rb, line 525
def each_with_index(which = :all) # :yield: e, row, column
  return to_enum :each_with_index, which unless block_given?
  last = column_count - 1
  case which
  when :all
    @rows.each_with_index do |row, row_index|
      row.each_with_index do |e, col_index|
        yield e, row_index, col_index
      end
    end
  when :diagonal
    @rows.each_with_index do |row, row_index|
      yield row.fetch(row_index){return self}, row_index, row_index
    end
  when :off_diagonal
    @rows.each_with_index do |row, row_index|
      column_count.times do |col_index|
        yield row[col_index], row_index, col_index unless row_index == col_index
      end
    end
  when :lower
    @rows.each_with_index do |row, row_index|
      0.upto([row_index, last].min) do |col_index|
        yield row[col_index], row_index, col_index
      end
    end
  when :strict_lower
    @rows.each_with_index do |row, row_index|
      [row_index, column_count].min.times do |col_index|
        yield row[col_index], row_index, col_index
      end
    end
  when :strict_upper
    @rows.each_with_index do |row, row_index|
      (row_index+1).upto(last) do |col_index|
        yield row[col_index], row_index, col_index
      end
    end
  when :upper
    @rows.each_with_index do |row, row_index|
      row_index.upto(last) do |col_index|
        yield row[col_index], row_index, col_index
      end
    end
  else
    raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
  end
  self
end
             
            Returns the Eigensystem of the matrix; see EigenvalueDecomposition.
m = Matrix[[1, 2], [3, 4]] v, d, v_inv = m.eigensystem d.diagonal? # => true v.inv == v_inv # => true (v * d * v_inv).round(5) == m # => true
 
               # File matrix.rb, line 1371
def eigensystem
  EigenvalueDecomposition.new(self)
end
             
             
               # File matrix.rb, line 1492
def elements_to_f
  warn "#{caller(1)[0]}: warning: Matrix#elements_to_f is deprecated, use map(&:to_f)"
  map(&:to_f)
end
             
             
               # File matrix.rb, line 1497
def elements_to_i
  warn "#{caller(1)[0]}: warning: Matrix#elements_to_i is deprecated, use map(&:to_i)"
  map(&:to_i)
end
             
             
               # File matrix.rb, line 1502
def elements_to_r
  warn "#{caller(1)[0]}: warning: Matrix#elements_to_r is deprecated, use map(&:to_r)"
  map(&:to_r)
end
             
            Returns true if this is an empty matrix, i.e. if the number of rows or the number of columns is 0.
 
               # File matrix.rb, line 757
def empty?
  column_count == 0 || row_count == 0
end
             
             
               # File matrix.rb, line 922
def eql?(other)
  return false unless Matrix === other &&
                      column_count == other.column_count # necessary for empty matrices
  rows.eql? other.rows
end
             
            Returns the submatrix obtained by deleting the specified row and column.
Matrix.diagonal(9, 5, -3, 4).first_minor(1, 2)
  => 9 0 0
     0 0 0
     0 0 4
            
            
             
               # File matrix.rb, line 660
def first_minor(row, column)
  raise RuntimeError, "first_minor of empty matrix is not defined" if empty?
  unless 0 <= row && row < row_count
    raise ArgumentError, "invalid row (#{row.inspect} for 0..#{row_count - 1})"
  end
  unless 0 <= column && column < column_count
    raise ArgumentError, "invalid column (#{column.inspect} for 0..#{column_count - 1})"
  end
  arrays = to_a
  arrays.delete_at(row)
  arrays.each do |array|
    array.delete_at(column)
  end
  new_matrix arrays, column_count - 1
end
             
            Returns a hash-code for the matrix.
 
               # File matrix.rb, line 940
def hash
  @rows.hash
end
             
            Returns true if this is an hermitian matrix. Raises an error if matrix is not square.
 
               # File matrix.rb, line 765
def hermitian?
  Matrix.Raise ErrDimensionMismatch unless square?
  each_with_index(:upper).all? do |e, row, col|
    e == rows[col][row].conj
  end
end
             
            Returns a new matrix resulting by stacking horizontally the receiver with the given matrices
x = Matrix[[1, 2], [3, 4]] y = Matrix[[5, 6], [7, 8]] x.hstack(y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
 
               # File matrix.rb, line 1262
def hstack(*matrices)
  self.class.hstack(self, *matrices)
end
             
            Returns the imaginary part of the matrix.
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
  => 1+2i  i  0
        1  2  3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].imaginary
  =>   2i  i  0
        0  0  0
            
            
             
               # File matrix.rb, line 1418
def imaginary
  collect(&:imaginary)
end
             
            The index method is specialized to return the index as [row, column] It also accepts an optional selector argument, see each for details.
Matrix[ [1,2], [3,4] ].index(&:even?) # => [0, 1] Matrix[ [1,1], [1,1] ].index(1, :strict_lower) # => [1, 0]
 
               # File matrix.rb, line 588
def index(*args)
  raise ArgumentError, "wrong number of arguments(#{args.size} for 0-2)" if args.size > 2
  which = (args.size == 2 || SELECTORS.include?(args.last)) ? args.pop : :all
  return to_enum :find_index, which, *args unless block_given? || args.size == 1
  if args.size == 1
    value = args.first
    each_with_index(which) do |e, row_index, col_index|
      return row_index, col_index if e == value
    end
  else
    each_with_index(which) do |e, row_index, col_index|
      return row_index, col_index if yield e
    end
  end
  nil
end
             
            Overrides Object#inspect
 
               # File matrix.rb, line 1527
def inspect
  if empty?
    "#{self.class}.empty(#{row_count}, #{column_count})"
  else
    "#{self.class}#{@rows.inspect}"
  end
end
             
            Returns the inverse of the matrix.
Matrix[[-1, -1], [0, -1]].inverse
  => -1  1
      0 -1
            
            
             
               # File matrix.rb, line 1061
def inverse
  Matrix.Raise ErrDimensionMismatch unless square?
  self.class.I(row_count).send(:inverse_from, self)
end
             
            Returns the Laplace expansion along given row or column.
Matrix[[7,6], [3,9]].laplace_expansion(column: 1) => 45 Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0) => Vector[3, -2]
 
               # File matrix.rb, line 719
def laplace_expansion(row: nil, column: nil)
  num = row || column
  if !num || (row && column)
    raise ArgumentError, "exactly one the row or column arguments must be specified"
  end
  Matrix.Raise ErrDimensionMismatch unless square?
  raise RuntimeError, "laplace_expansion of empty matrix is not defined" if empty?
  unless 0 <= num && num < row_count
    raise ArgumentError, "invalid num (#{num.inspect} for 0..#{row_count - 1})"
  end
  send(row ? :row : :column, num).map.with_index { |e, k|
    e * cofactor(*(row ? [num, k] : [k,num]))
  }.inject(:+)
end
             
            Returns true if this is a lower triangular matrix.
 
               # File matrix.rb, line 775
def lower_triangular?
  each(:strict_upper).all?(&:zero?)
end
             
            Returns the LUP decomposition of the matrix; see LUPDecomposition.
a = Matrix[[1, 2], [3, 4]] l, u, p = a.lup l.lower_triangular? # => true u.upper_triangular? # => true p.permutation? # => true l * u == p * a # => true a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
 
               # File matrix.rb, line 1386
def lup
  LUPDecomposition.new(self)
end
             
            Returns a section of the matrix. The parameters are either:
start_row, nrows, start_col, ncols; OR
row_range, col_range
Matrix.diagonal(9, 5, -3).minor(0..1, 0..2)
  => 9 0 0
     0 5 0
Like Array#[], negative indices count backward from the end of the row or column (-1 is the last element). Returns nil if the starting row or column is greater than row_count or column_count respectively.
 
               # File matrix.rb, line 619
def minor(*param)
  case param.size
  when 2
    row_range, col_range = param
    from_row = row_range.first
    from_row += row_count if from_row < 0
    to_row = row_range.end
    to_row += row_count if to_row < 0
    to_row += 1 unless row_range.exclude_end?
    size_row = to_row - from_row
    from_col = col_range.first
    from_col += column_count if from_col < 0
    to_col = col_range.end
    to_col += column_count if to_col < 0
    to_col += 1 unless col_range.exclude_end?
    size_col = to_col - from_col
  when 4
    from_row, size_row, from_col, size_col = param
    return nil if size_row < 0 || size_col < 0
    from_row += row_count if from_row < 0
    from_col += column_count if from_col < 0
  else
    raise ArgumentError, param.inspect
  end
  return nil if from_row > row_count || from_col > column_count || from_row < 0 || from_col < 0
  rows = @rows[from_row, size_row].collect{|row|
    row[from_col, size_col]
  }
  new_matrix rows, [column_count - from_col, size_col].min
end
             
            Returns true if this is a normal matrix. Raises an error if matrix is not square.
 
               # File matrix.rb, line 783
def normal?
  Matrix.Raise ErrDimensionMismatch unless square?
  rows.each_with_index do |row_i, i|
    rows.each_with_index do |row_j, j|
      s = 0
      rows.each_with_index do |row_k, k|
        s += row_i[k] * row_j[k].conj - row_k[i].conj * row_k[j]
      end
      return false unless s == 0
    end
  end
  true
end
             
            Returns true if this is an orthogonal matrix Raises an error if matrix is not square.
 
               # File matrix.rb, line 801
def orthogonal?
  Matrix.Raise ErrDimensionMismatch unless square?
  rows.each_with_index do |row, i|
    column_count.times do |j|
      s = 0
      row_count.times do |k|
        s += row[k] * rows[k][j]
      end
      return false unless s == (i == j ? 1 : 0)
    end
  end
  true
end
             
            Returns true if this is a permutation matrix Raises an error if matrix is not square.
 
               # File matrix.rb, line 819
def permutation?
  Matrix.Raise ErrDimensionMismatch unless square?
  cols = Array.new(column_count)
  rows.each_with_index do |row, i|
    found = false
    row.each_with_index do |e, j|
      if e == 1
        return false if found || cols[j]
        found = cols[j] = true
      elsif e != 0
        return false
      end
    end
    return false unless found
  end
  true
end
             
            Returns the rank of the matrix. Beware that using Float values can yield erroneous results because of their lack of precision. Consider using exact types like Rational or BigDecimal instead.
Matrix[[7,6], [3,9]].rank => 2
 
               # File matrix.rb, line 1275
def rank
  # We currently use Bareiss' multistep integer-preserving gaussian elimination
  # (see comments on determinant)
  a = to_a
  last_column = column_count - 1
  last_row = row_count - 1
  pivot_row = 0
  previous_pivot = 1
  0.upto(last_column) do |k|
    switch_row = (pivot_row .. last_row).find {|row|
      a[row][k] != 0
    }
    if switch_row
      a[switch_row], a[pivot_row] = a[pivot_row], a[switch_row] unless pivot_row == switch_row
      pivot = a[pivot_row][k]
      (pivot_row+1).upto(last_row) do |i|
         ai = a[i]
         (k+1).upto(last_column) do |j|
           ai[j] =  (pivot * ai[j] - ai[k] * a[pivot_row][j]) / previous_pivot
         end
       end
      pivot_row += 1
      previous_pivot = pivot
    end
  end
  pivot_row
end
             
            deprecated; use Matrix#rank
 
               # File matrix.rb, line 1306
def rank_e
  warn "#{caller(1)[0]}: warning: Matrix#rank_e is deprecated; use #rank"
  rank
end
             
            Returns the real part of the matrix.
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
  => 1+2i  i  0
        1  2  3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].real
  =>    1  0  0
        1  2  3
            
            
             
               # File matrix.rb, line 1432
def real
  collect(&:real)
end
             
            Returns true if all entries of the matrix are real.
 
               # File matrix.rb, line 840
def real?
  all?(&:real?)
end
             
            Returns an array containing matrices corresponding to the real and imaginary parts of the matrix
m.rect == [m.real, m.imag] # ==> true for all matrices m
 
               # File matrix.rb, line 1442
def rect
  [real, imag]
end
             
            Returns true if this is a regular (i.e. non-singular) matrix.
 
               # File matrix.rb, line 847
def regular?
  not singular?
end
             
            Returns a matrix with entries rounded to the given precision (see Float#round)
 
               # File matrix.rb, line 1314
def round(ndigits=0)
  map{|e| e.round(ndigits)}
end
             
            Returns row vector number i of the matrix as a Vector (starting at 0 like an array).  When a block is given, the elements of that vector are iterated.
 
               # File matrix.rb, line 404
def row(i, &block) # :yield: e
  if block_given?
    @rows.fetch(i){return self}.each(&block)
    self
  else
    Vector.elements(@rows.fetch(i){return nil})
  end
end
             
            Returns the number of rows.
 
               # File matrix.rb, line 389
def row_count
  @rows.size
end
             
            Returns an array of the row vectors of the matrix.  See Vector.
 
               # File matrix.rb, line 1470
def row_vectors
  Array.new(row_count) {|i|
    row(i)
  }
end
             
            Returns true if this is a singular matrix.
 
               # File matrix.rb, line 854
def singular?
  determinant == 0
end
             
            Returns true if this is a square matrix.
 
               # File matrix.rb, line 861
def square?
  column_count == row_count
end
             
            Returns true if this is a symmetric matrix. Raises an error if matrix is not square.
 
               # File matrix.rb, line 869
def symmetric?
  Matrix.Raise ErrDimensionMismatch unless square?
  each_with_index(:strict_upper) do |e, row, col|
    return false if e != rows[col][row]
  end
  true
end
             
            Returns an array of arrays that describe the rows of the matrix.
 
               # File matrix.rb, line 1488
def to_a
  @rows.collect(&:dup)
end
             
            Overrides Object#to_s
 
               # File matrix.rb, line 1514
def to_s
  if empty?
    "#{self.class}.empty(#{row_count}, #{column_count})"
  else
    "#{self.class}[" + @rows.collect{|row|
      "[" + row.collect{|e| e.to_s}.join(", ") + "]"
    }.join(", ")+"]"
  end
end
             
            Returns the trace (sum of diagonal elements) of the matrix.
Matrix[[7,6], [3,9]].trace => 16
 
               # File matrix.rb, line 1323
def trace
  Matrix.Raise ErrDimensionMismatch unless square?
  (0...column_count).inject(0) do |tr, i|
    tr + @rows[i][i]
  end
end
             
            Returns the transpose of the matrix.
Matrix[[1,2], [3,4], [5,6]]
  => 1 2
     3 4
     5 6
Matrix[[1,2], [3,4], [5,6]].transpose
  => 1 3 5
     2 4 6
            
            
             
               # File matrix.rb, line 1341
def transpose
  return self.class.empty(column_count, 0) if row_count.zero?
  new_matrix @rows.transpose, row_count
end
             
            Returns true if this is a unitary matrix Raises an error if matrix is not square.
 
               # File matrix.rb, line 881
def unitary?
  Matrix.Raise ErrDimensionMismatch unless square?
  rows.each_with_index do |row, i|
    column_count.times do |j|
      s = 0
      row_count.times do |k|
        s += row[k].conj * rows[k][j]
      end
      return false unless s == (i == j ? 1 : 0)
    end
  end
  true
end
             
            Returns true if this is an upper triangular matrix.
 
               # File matrix.rb, line 898
def upper_triangular?
  each(:strict_lower).all?(&:zero?)
end
             
            Returns a new matrix resulting by stacking vertically the receiver with the given matrices
x = Matrix[[1, 2], [3, 4]] y = Matrix[[5, 6], [7, 8]] x.vstack(y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
 
               # File matrix.rb, line 1355
def vstack(*matrices)
  self.class.vstack(self, *matrices)
end