Numeric
Rational implements a rational class for numbers.
A rational number is a number that can be expressed as a fraction p/q where p and q are integers and q != 0. A rational number p/q is said to have numerator p and denominator q. Numbers that are not rational are called irrational numbers. (mathworld.wolfram.com/RationalNumber.html)
To create a Rational Number:
Rational(a,b) # -> a/b Rational.new!(a,b) # -> a/b
Examples:
Rational(5,6) # -> 5/6 Rational(5) # -> 5/1
Rational numbers are reduced to their lowest terms:
Rational(6,10) # -> 3/5
But not if you use the unusual method “new!”:
Rational.new!(6,10) # -> 6/10
Division by zero is obviously not allowed:
Rational(3,0) # -> ZeroDivisionError
This method is actually private.
# File rational.rb, line 102
def initialize(num, den)
if den < 0
num = -num
den = -den
end
if num.kind_of?(Integer) and den.kind_of?(Integer)
@numerator = num
@denominator = den
else
@numerator = num.to_i
@denominator = den.to_i
end
end
Implements the constructor. This method does not reduce to lowest terms or check for division by zero. Therefore #Rational() should be preferred in normal use.
# File rational.rb, line 93
def Rational.new!(num, den = 1)
new(num, den)
end
Reduces the given numerator and denominator to their lowest terms. Use Rational() instead.
# File rational.rb, line 71
def Rational.reduce(num, den = 1)
raise ZeroDivisionError, "denominator is zero" if den == 0
if den < 0
num = -num
den = -den
end
gcd = num.gcd(den)
num = num.div(gcd)
den = den.div(gcd)
if den == 1 && defined?(Unify)
num
else
new!(num, den)
end
end
Returns the remainder when this value is divided by other.
Examples:
r = Rational(7,4) # -> Rational(7,4) r % Rational(1,2) # -> Rational(1,4) r % 1 # -> Rational(3,4) r % Rational(1,7) # -> Rational(1,28) r % 0.26 # -> 0.19
# File rational.rb, line 253
def % (other)
value = (self / other).to_i
return self - other * value
end
Returns the product of this value and a.
Examples:
r = Rational(3,4) # -> Rational(3,4) r * 2 # -> Rational(3,2) r * 4 # -> Rational(3,1) r * 0.5 # -> 0.375 r * Rational(1,2) # -> Rational(3,8)
# File rational.rb, line 173
def * (a)
if a.kind_of?(Rational)
num = @numerator * a.numerator
den = @denominator * a.denominator
Rational(num, den)
elsif a.kind_of?(Integer)
self * Rational.new!(a, 1)
elsif a.kind_of?(Float)
Float(self) * a
else
x, y = a.coerce(self)
x * y
end
end
Returns this value raised to the given power.
Examples:
r = Rational(3,4) # -> Rational(3,4) r ** 2 # -> Rational(9,16) r ** 2.0 # -> 0.5625 r ** Rational(1,2) # -> 0.866025403784439
# File rational.rb, line 220
def ** (other)
if other.kind_of?(Rational)
Float(self) ** other
elsif other.kind_of?(Integer)
if other > 0
num = @numerator ** other
den = @denominator ** other
elsif other < 0
num = @denominator ** -other
den = @numerator ** -other
elsif other == 0
num = 1
den = 1
end
Rational.new!(num, den)
elsif other.kind_of?(Float)
Float(self) ** other
else
x, y = other.coerce(self)
x ** y
end
end
Returns the addition of this value and a.
Examples:
r = Rational(3,4) # -> Rational(3,4) r + 1 # -> Rational(7,4) r + 0.5 # -> 1.25
# File rational.rb, line 124
def + (a)
if a.kind_of?(Rational)
num = @numerator * a.denominator
num_a = a.numerator * @denominator
Rational(num + num_a, @denominator * a.denominator)
elsif a.kind_of?(Integer)
self + Rational.new!(a, 1)
elsif a.kind_of?(Float)
Float(self) + a
else
x, y = a.coerce(self)
x + y
end
end
Returns the difference of this value and a. subtracted.
Examples:
r = Rational(3,4) # -> Rational(3,4) r - 1 # -> Rational(-1,4) r - 0.5 # -> 0.25
# File rational.rb, line 148
def - (a)
if a.kind_of?(Rational)
num = @numerator * a.denominator
num_a = a.numerator * @denominator
Rational(num - num_a, @denominator*a.denominator)
elsif a.kind_of?(Integer)
self - Rational.new!(a, 1)
elsif a.kind_of?(Float)
Float(self) - a
else
x, y = a.coerce(self)
x - y
end
end
Returns the quotient of this value and a.
r = Rational(3,4) # -> Rational(3,4) r / 2 # -> Rational(3,8) r / 2.0 # -> 0.375 r / Rational(1,2) # -> Rational(3,2)
# File rational.rb, line 195
def / (a)
if a.kind_of?(Rational)
num = @numerator * a.denominator
den = @denominator * a.numerator
Rational(num, den)
elsif a.kind_of?(Integer)
raise ZeroDivisionError, "division by zero" if a == 0
self / Rational.new!(a, 1)
elsif a.kind_of?(Float)
Float(self) / a
else
x, y = a.coerce(self)
x / y
end
end
Standard comparison operator.
# File rational.rb, line 305
def <=> (other)
if other.kind_of?(Rational)
num = @numerator * other.denominator
num_a = other.numerator * @denominator
v = num - num_a
if v > 0
return 1
elsif v < 0
return -1
else
return 0
end
elsif other.kind_of?(Integer)
return self <=> Rational.new!(other, 1)
elsif other.kind_of?(Float)
return Float(self) <=> other
elsif defined? other.coerce
x, y = other.coerce(self)
return x <=> y
else
return nil
end
end
Returns true iff this value is numerically equal to
other.
But beware:
Rational(1,2) == Rational(4,8) # -> true Rational(1,2) == Rational.new!(4,8) # -> false
Don't use ::new!
# File rational.rb, line 290
def == (other)
if other.kind_of?(Rational)
@numerator == other.numerator and @denominator == other.denominator
elsif other.kind_of?(Integer)
self == Rational.new!(other, 1)
elsif other.kind_of?(Float)
Float(self) == other
else
other == self
end
end
Returns the absolute value.
# File rational.rb, line 273
def abs
if @numerator > 0
Rational.new!(@numerator, @denominator)
else
Rational.new!(-@numerator, @denominator)
end
end
# File rational.rb, line 329
def coerce(other)
if other.kind_of?(Float)
return other, self.to_f
elsif other.kind_of?(Integer)
return Rational.new!(other, 1), self
else
super
end
end
Returns the quotient and remainder.
Examples:
r = Rational(7,4) # -> Rational(7,4) r.divmod Rational(1,2) # -> [3, Rational(1,4)]
# File rational.rb, line 265
def divmod(other)
value = (self / other).to_i
return value, self - other * value
end
Returns a hash code for the object.
# File rational.rb, line 395
def hash
@numerator.hash ^ @denominator.hash
end
Returns a reconstructable string representation:
Rational(5,8).inspect # -> "Rational(5, 8)"
# File rational.rb, line 388
def inspect
sprintf("Rational(%s, %s)", @numerator.inspect, @denominator.inspect)
end
Converts the rational to a Float.
# File rational.rb, line 357
def to_f
@numerator.to_f/@denominator.to_f
end
Converts the rational to an Integer. Not the nearest integer, the truncated integer. Study the following example carefully:
Rational(+7,4).to_i # -> 1 Rational(-7,4).to_i # -> -2 (-1.75).to_i # -> -1
In other words:
Rational(-7,4) == -1.75 # -> true Rational(-7,4).to_i == (-1.75).to_i # false
# File rational.rb, line 350
def to_i
Integer(@numerator.div(@denominator))
end