class Range

A Range object represents a collection of values that are between given begin and end values.

You can create an Range object explicitly with:

  • A range literal:

    # Ranges that use '..' to include the given end value.
    (1..4).to_a      # => [1, 2, 3, 4]
    ('a'..'d').to_a  # => ["a", "b", "c", "d"]
    # Ranges that use '...' to exclude the given end value.
    (1...4).to_a     # => [1, 2, 3]
    ('a'...'d').to_a # => ["a", "b", "c"]
    

A range may be created using method Range.new:

# Ranges that by default include the given end value.
Range.new(1, 4).to_a     # => [1, 2, 3, 4]
Range.new('a', 'd').to_a # => ["a", "b", "c", "d"]
# Ranges that use third argument +exclude_end+ to exclude the given end value.
Range.new(1, 4, true).to_a     # => [1, 2, 3]
Range.new('a', 'd', true).to_a # => ["a", "b", "c"]

Beginless Ranges

A beginless range has a definite end value, but a nil begin value. Such a range includes all values up to the end value.

r = (..4)               # => nil..4
r.begin                 # => nil
r.include?(-50)         # => true
r.include?(4)           # => true

r = (...4)              # => nil...4
r.include?(4)           # => false

Range.new(nil, 4)       # => nil..4
Range.new(nil, 4, true) # => nil...4

A beginless range may be used to slice an array:

a = [1, 2, 3, 4]
r = (..2) # => nil...2
a[r]      # => [1, 2]

Method each for a beginless range raises an exception.

Endless Ranges

An endless range has a definite begin value, but a nil end value. Such a range includes all values from the begin value.

r = (1..)         # => 1..
r.end             # => nil
r.include?(50)    # => true

Range.new(1, nil) # => 1..

The literal for an endless range may be written with either two dots or three. The range has the same elements, either way. But note that the two are not equal:

r0 = (1..)           # => 1..
r1 = (1...)          # => 1...
r0.begin == r1.begin # => true
r0.end == r1.end     # => true
r0 == r1             # => false

An endless range may be used to slice an array:

a = [1, 2, 3, 4]
r = (2..) # => 2..
a[r]      # => [3, 4]

Method each for an endless range calls the given block indefinitely:

a = []
r = (1..)
r.each do |i|
  a.push(i) if i.even?
  break if i > 10
end
a # => [2, 4, 6, 8, 10]

Ranges and Other Classes

An object may be put into a range if its class implements instance method <=>. Ruby core classes that do so include Array, Complex, File::Stat, Float, Integer, Kernel, Module, Numeric, Rational, String, Symbol, and Time.

Example:

t0 = Time.now         # => 2021-09-19 09:22:48.4854986 -0500
t1 = Time.now         # => 2021-09-19 09:22:56.0365079 -0500
t2 = Time.now         # => 2021-09-19 09:23:08.5263283 -0500
(t0..t2).include?(t1) # => true
(t0..t1).include?(t2) # => false

A range can be iterated over only if its elements implement instance method succ. Ruby core classes that do so include Integer, String, and Symbol (but not the other classes mentioned above).

Iterator methods include:

Example:

a = []
(1..4).each {|i| a.push(i) }
a # => [1, 2, 3, 4]

Ranges and User-Defined Classes

A user-defined class that is to be used in a range must implement instance <=>; see Integer#<=>. To make iteration available, it must also implement instance method succ; see Integer#succ.

The class below implements both <=> and succ, and so can be used both to construct ranges and to iterate over them. Note that the Comparable module is included so the == method is defined in terms of <=>.

# Represent a string of 'X' characters.
class Xs
  include Comparable
  attr_accessor :length
  def initialize(n)
    @length = n
  end
  def succ
    Xs.new(@length + 1)
  end
  def <=>(other)
    @length <=> other.length
  end
  def to_s
    sprintf "%2d #{inspect}", @length
  end
  def inspect
    'X' * @length
  end
end

r = Xs.new(3)..Xs.new(6) #=> XXX..XXXXXX
r.to_a                   #=> [XXX, XXXX, XXXXX, XXXXXX]
r.include?(Xs.new(5))    #=> true
r.include?(Xs.new(7))    #=> false

What’s Here

First, what’s elsewhere. Class Range:

Here, class Range provides methods that are useful for:

Methods for Creating a Range

  • ::new

    Returns a new range.

Methods for Querying

  • begin

    Returns the begin value given for self.

  • bsearch

    Returns an element from self selected by a binary search.

  • count

    Returns a count of elements in self.

  • end

    Returns the end value given for self.

  • exclude_end?

    Returns whether the end object is excluded.

  • first

    Returns the first elements of self.

  • hash

    Returns the integer hash code.

  • last

    Returns the last elements of self.

  • max

    Returns the maximum values in self.

  • min

    Returns the minimum values in self.

  • minmax

    Returns the minimum and maximum values in self.

  • size

    Returns the count of elements in self.

Methods for Comparing

  • #==

    Returns whether a given object is equal to self (uses ==).

  • ===

    Returns whether the given object is between the begin and end values.

  • cover?

    Returns whether a given object is within self.

  • eql?

    Returns whether a given object is equal to self (uses eql?).

  • include? (aliased as member?)

    Returns whether a given object is an element of self.

Methods for Iterating

  • %

    Requires argument n; calls the block with each n-th element of self.

  • each

    Calls the block with each element of self.

  • step

    Takes optional argument n (defaults to 1); calls the block with each n-th element of self.

Methods for Converting

  • inspect

    Returns a string representation of self (uses inspect).

  • to_a (aliased as entries)

    Returns elements of self in an array.

  • to_s

    Returns a string representation of self (uses to_s).

Public Class Methods

new(begin, end, exclude_end = false) → new_range click to toggle source

Returns a new range based on the given objects begin and end. Optional argument exclude_end determines whether object end is included as the last object in the range:

Range.new(2, 5).to_a            # => [2, 3, 4, 5]
Range.new(2, 5, true).to_a      # => [2, 3, 4]
Range.new('a', 'd').to_a        # => ["a", "b", "c", "d"]
Range.new('a', 'd', true).to_a  # => ["a", "b", "c"]
static VALUE
range_initialize(int argc, VALUE *argv, VALUE range)
{
    VALUE beg, end, flags;

    rb_scan_args(argc, argv, "21", &beg, &end, &flags);
    range_modify(range);
    range_init(range, beg, end, RBOOL(RTEST(flags)));
    return Qnil;
}

Public Instance Methods

%(n) {|element| ... } → self click to toggle source
%(n) → enumerator

Iterates over the elements of self.

With a block given, calls the block with selected elements of the range; returns self:

a = []
(1..5).%(2) {|element| a.push(element) } # => 1..5
a # => [1, 3, 5]
a = []
('a'..'e').%(2) {|element| a.push(element) } # => "a".."e"
a # => ["a", "c", "e"]

With no block given, returns an enumerator, which will be of class Enumerator::ArithmeticSequence if self is numeric; otherwise of class Enumerator:

e = (1..5) % 2 # => ((1..5).%(2))
e.class        # => Enumerator::ArithmeticSequence
('a'..'e') % 2 # =>  #<Enumerator: ...>

Related: Range#step.

static VALUE
range_percent_step(VALUE range, VALUE step)
{
    return range_step(1, &step, range);
}
self == other → true or false click to toggle source

Returns true if and only if:

  • other is a range.

  • other.begin == self.begin.

  • other.end == self.end.

  • other.exclude_end? == self.exclude_end?.

Otherwise returns false.

r = (1..5)
r == (1..5)                # => true
r = Range.new(1, 5)
r == 'foo'                 # => false
r == (2..5)                # => false
r == (1..4)                # => false
r == (1...5)               # => false
r == Range.new(1, 5, true) # => false

Note that even with the same argument, the return values of == and eql? can differ:

(1..2) == (1..2.0)   # => true
(1..2).eql? (1..2.0) # => false

Related: Range#eql?.

static VALUE
range_eq(VALUE range, VALUE obj)
{
    if (range == obj)
        return Qtrue;
    if (!rb_obj_is_kind_of(obj, rb_cRange))
        return Qfalse;

    return rb_exec_recursive_paired(recursive_equal, range, obj, obj);
}
self === object → true or false click to toggle source

Returns true if object is between self.begin and self.end. false otherwise:

(1..4) === 2       # => true
(1..4) === 5       # => false
(1..4) === 'a'     # => false
(1..4) === 4       # => true
(1...4) === 4      # => false
('a'..'d') === 'c' # => true
('a'..'d') === 'e' # => false

A case statement uses method ===, and so:

case 79
when (1..50)
  "low"
when (51..75)
  "medium"
when (76..100)
  "high"
end # => "high"

case "2.6.5"
when ..."2.4"
  "EOL"
when "2.4"..."2.5"
  "maintenance"
when "2.5"..."3.0"
  "stable"
when "3.1"..
  "upcoming"
end # => "stable"
static VALUE
range_eqq(VALUE range, VALUE val)
{
    VALUE ret = range_include_internal(range, val, 1);
    if (ret != Qundef) return ret;
    return r_cover_p(range, RANGE_BEG(range), RANGE_END(range), val);
}
begin → object click to toggle source

Returns the object that defines the beginning of self.

(1..4).begin # => 1
(..2).begin  # => nil

Related: Range#first, Range#end.

static VALUE
range_begin(VALUE range)
{
    return RANGE_BEG(range);
}
bsearch {|obj| block } → value click to toggle source

Returns an element from self selected by a binary search.

See Binary Searching.

static VALUE
range_bsearch(VALUE range)
{
    VALUE beg, end, satisfied = Qnil;
    int smaller;

    /* Implementation notes:
     * Floats are handled by mapping them to 64 bits integers.
     * Apart from sign issues, floats and their 64 bits integer have the
     * same order, assuming they are represented as exponent followed
     * by the mantissa. This is true with or without implicit bit.
     *
     * Finding the average of two ints needs to be careful about
     * potential overflow (since float to long can use 64 bits)
     * as well as the fact that -1/2 can be 0 or -1 in C89.
     *
     * Note that -0.0 is mapped to the same int as 0.0 as we don't want
     * (-1...0.0).bsearch to yield -0.0.
     */

#define BSEARCH(conv) \
    do { \
        RETURN_ENUMERATOR(range, 0, 0); \
        if (EXCL(range)) high--; \
        org_high = high; \
        while (low < high) { \
            mid = ((high < 0) == (low < 0)) ? low + ((high - low) / 2) \
                : (low < -high) ? -((-1 - low - high)/2 + 1) : (low + high) / 2; \
            BSEARCH_CHECK(conv(mid)); \
            if (smaller) { \
                high = mid; \
            } \
            else { \
                low = mid + 1; \
            } \
        } \
        if (low == org_high) { \
            BSEARCH_CHECK(conv(low)); \
            if (!smaller) return Qnil; \
        } \
        return satisfied; \
    } while (0)


    beg = RANGE_BEG(range);
    end = RANGE_END(range);

    if (FIXNUM_P(beg) && FIXNUM_P(end)) {
        long low = FIX2LONG(beg);
        long high = FIX2LONG(end);
        long mid, org_high;
        BSEARCH(INT2FIX);
    }
#if SIZEOF_DOUBLE == 8 && defined(HAVE_INT64_T)
    else if (RB_FLOAT_TYPE_P(beg) || RB_FLOAT_TYPE_P(end)) {
        int64_t low  = double_as_int64(NIL_P(beg) ? -HUGE_VAL : RFLOAT_VALUE(rb_Float(beg)));
        int64_t high = double_as_int64(NIL_P(end) ?  HUGE_VAL : RFLOAT_VALUE(rb_Float(end)));
        int64_t mid, org_high;
        BSEARCH(int64_as_double_to_num);
    }
#endif
    else if (is_integer_p(beg) && is_integer_p(end)) {
        RETURN_ENUMERATOR(range, 0, 0);
        return bsearch_integer_range(beg, end, EXCL(range));
    }
    else if (is_integer_p(beg) && NIL_P(end)) {
        VALUE diff = LONG2FIX(1);
        RETURN_ENUMERATOR(range, 0, 0);
        while (1) {
            VALUE mid = rb_funcall(beg, '+', 1, diff);
            BSEARCH_CHECK(mid);
            if (smaller) {
                return bsearch_integer_range(beg, mid, 0);
            }
            diff = rb_funcall(diff, '*', 1, LONG2FIX(2));
        }
    }
    else if (NIL_P(beg) && is_integer_p(end)) {
        VALUE diff = LONG2FIX(-1);
        RETURN_ENUMERATOR(range, 0, 0);
        while (1) {
            VALUE mid = rb_funcall(end, '+', 1, diff);
            BSEARCH_CHECK(mid);
            if (!smaller) {
                return bsearch_integer_range(mid, end, 0);
            }
            diff = rb_funcall(diff, '*', 1, LONG2FIX(2));
        }
    }
    else {
        rb_raise(rb_eTypeError, "can't do binary search for %s", rb_obj_classname(beg));
    }
    return range;
}
count → integer click to toggle source
count(object) → integer
count {|element| ... } → integer

Returns the count of elements, based on an argument or block criterion, if given.

With no argument and no block given, returns the number of elements:

(1..4).count      # => 4
(1...4).count     # => 3
('a'..'d').count  # => 4
('a'...'d').count # => 3
(1..).count       # => Infinity
(..4).count       # => Infinity

With argument object, returns the number of object found in self, which will usually be zero or one:

(1..4).count(2)   # => 1
(1..4).count(5)   # => 0
(1..4).count('a')  # => 0

With a block given, calls the block with each element; returns the number of elements for which the block returns a truthy value:

(1..4).count {|element| element < 3 } # => 2

Related: Range#size.

static VALUE
range_count(int argc, VALUE *argv, VALUE range)
{
    if (argc != 0) {
        /* It is odd for instance (1...).count(0) to return Infinity. Just let
         * it loop. */
        return rb_call_super(argc, argv);
    }
    else if (rb_block_given_p()) {
        /* Likewise it is odd for instance (1...).count {|x| x == 0 } to return
         * Infinity. Just let it loop. */
        return rb_call_super(argc, argv);
    }
    else if (NIL_P(RANGE_END(range))) {
        /* We are confident that the answer is Infinity. */
        return DBL2NUM(HUGE_VAL);
    }
    else if (NIL_P(RANGE_BEG(range))) {
        /* We are confident that the answer is Infinity. */
        return DBL2NUM(HUGE_VAL);
    }
    else {
        return rb_call_super(argc, argv);
    }
}
cover?(object) → true or false click to toggle source
cover?(range) → true or false
Returns +true+ if the given argument is within +self+, +false+ otherwise.

With non-range argument +object+, evaluates with <tt><=</tt> and <tt><</tt>.

For range +self+ with included end value (<tt>#exclude_end? == false</tt>),
evaluates thus:

  self.begin <= object <= self.end

Examples:

  r = (1..4)
  r.cover?(1)     # => true
  r.cover?(4)     # => true
  r.cover?(0)     # => false
  r.cover?(5)     # => false
  r.cover?('foo') # => false

  r = ('a'..'d')
  r.cover?('a')     # => true
  r.cover?('d')     # => true
  r.cover?(' ')     # => false
  r.cover?('e')     # => false
  r.cover?(0)       # => false

For range +r+ with excluded end value (<tt>#exclude_end? == true</tt>),
evaluates thus:

  r.begin <= object < r.end

Examples:

  r = (1...4)
  r.cover?(1)     # => true
  r.cover?(3)     # => true
  r.cover?(0)     # => false
  r.cover?(4)     # => false
  r.cover?('foo') # => false

  r = ('a'...'d')
  r.cover?('a')     # => true
  r.cover?('c')     # => true
  r.cover?(' ')     # => false
  r.cover?('d')     # => false
  r.cover?(0)       # => false

With range argument +range+, compares the first and last
elements of +self+ and +range+:

  r = (1..4)
  r.cover?(1..4)     # => true
  r.cover?(0..4)     # => false
  r.cover?(1..5)     # => false
  r.cover?('a'..'d') # => false

  r = (1...4)
  r.cover?(1..3)     # => true
  r.cover?(1..4)     # => false

If begin and end are numeric, #cover? behaves like #include?

  (1..3).cover?(1.5) # => true
  (1..3).include?(1.5) # => true

But when not numeric, the two methods may differ:

  ('a'..'d').cover?('cc')   # => true
  ('a'..'d').include?('cc') # => false

Returns +false+ if either:

- The begin value of +self+ is larger than its end value.
- An internal call to <tt><=></tt> returns +nil+;
  that is, the operands are not comparable.

Beginless ranges cover all values of the same type before the end, excluding the end for exclusive ranges. Beginless ranges cover ranges that end before the end of the beginless range, or at the end of the beginless range for inclusive ranges.

(..2).cover?(1)     # => true
(..2).cover?(2)     # => true
(..2).cover?(3)     # => false
(...2).cover?(2)    # => false
(..2).cover?("2")   # => false
(..2).cover?(..2)   # => true
(..2).cover?(...2)  # => true
(..2).cover?(.."2") # => false
(...2).cover?(..2)  # => false

Endless ranges cover all values of the same type after the beginning. Endless exclusive ranges do not cover endless inclusive ranges.

(2..).cover?(1)     # => false
(2..).cover?(3)     # => true
(2...).cover?(3)    # => true
(2..).cover?(2)     # => true
(2..).cover?("2")   # => false
(2..).cover?(2..)   # => true
(2..).cover?(2...)  # => true
(2..).cover?("2"..) # => false
(2...).cover?(2..)  # => false
(2...).cover?(3...) # => true
(2...).cover?(3..)  # => false
(3..).cover?(2..)   # => false

Ranges that are both beginless and endless cover all values and ranges, and return true for all arguments, with the exception that beginless and endless exclusive ranges do not cover endless inclusive ranges.

  (nil...).cover?(Object.new) # => true
  (nil...).cover?(nil...)     # => true
  (nil..).cover?(nil...)      # => true
  (nil...).cover?(nil..)      # => false
  (nil...).cover?(1..)        # => false

Related: Range#include?.
static VALUE
range_cover(VALUE range, VALUE val)
{
    VALUE beg, end;

    beg = RANGE_BEG(range);
    end = RANGE_END(range);

    if (rb_obj_is_kind_of(val, rb_cRange)) {
        return RBOOL(r_cover_range_p(range, beg, end, val));
    }
    return r_cover_p(range, beg, end, val);
}
each {|element| ... } → self click to toggle source
each → an_enumerator

With a block given, passes each element of self to the block:

a = []
(1..4).each {|element| a.push(element) } # => 1..4
a # => [1, 2, 3, 4]

Raises an exception unless self.first.respond_to?(:succ).

With no block given, returns an enumerator.

static VALUE
range_each(VALUE range)
{
    VALUE beg, end;
    long i;

    RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_size);

    beg = RANGE_BEG(range);
    end = RANGE_END(range);

    if (FIXNUM_P(beg) && NIL_P(end)) {
        range_each_fixnum_endless(beg);
    }
    else if (FIXNUM_P(beg) && FIXNUM_P(end)) { /* fixnums are special */
        return range_each_fixnum_loop(beg, end, range);
    }
    else if (RB_INTEGER_TYPE_P(beg) && (NIL_P(end) || RB_INTEGER_TYPE_P(end))) {
        if (SPECIAL_CONST_P(end) || RBIGNUM_POSITIVE_P(end)) { /* end >= FIXNUM_MIN */
            if (!FIXNUM_P(beg)) {
                if (RBIGNUM_NEGATIVE_P(beg)) {
                    do {
                        rb_yield(beg);
                    } while (!FIXNUM_P(beg = rb_big_plus(beg, INT2FIX(1))));
                    if (NIL_P(end)) range_each_fixnum_endless(beg);
                    if (FIXNUM_P(end)) return range_each_fixnum_loop(beg, end, range);
                }
                else {
                    if (NIL_P(end)) range_each_bignum_endless(beg);
                    if (FIXNUM_P(end)) return range;
                }
            }
            if (FIXNUM_P(beg)) {
                i = FIX2LONG(beg);
                do {
                    rb_yield(LONG2FIX(i));
                } while (POSFIXABLE(++i));
                beg = LONG2NUM(i);
            }
            ASSUME(!FIXNUM_P(beg));
            ASSUME(!SPECIAL_CONST_P(end));
        }
        if (!FIXNUM_P(beg) && RBIGNUM_SIGN(beg) == RBIGNUM_SIGN(end)) {
            if (EXCL(range)) {
                while (rb_big_cmp(beg, end) == INT2FIX(-1)) {
                    rb_yield(beg);
                    beg = rb_big_plus(beg, INT2FIX(1));
                }
            }
            else {
                VALUE c;
                while ((c = rb_big_cmp(beg, end)) != INT2FIX(1)) {
                    rb_yield(beg);
                    if (c == INT2FIX(0)) break;
                    beg = rb_big_plus(beg, INT2FIX(1));
                }
            }
        }
    }
    else if (SYMBOL_P(beg) && (NIL_P(end) || SYMBOL_P(end))) { /* symbols are special */
        beg = rb_sym2str(beg);
        if (NIL_P(end)) {
            rb_str_upto_endless_each(beg, sym_each_i, 0);
        }
        else {
            rb_str_upto_each(beg, rb_sym2str(end), EXCL(range), sym_each_i, 0);
        }
    }
    else {
        VALUE tmp = rb_check_string_type(beg);

        if (!NIL_P(tmp)) {
            if (!NIL_P(end)) {
                rb_str_upto_each(tmp, end, EXCL(range), each_i, 0);
            }
            else {
                rb_str_upto_endless_each(tmp, each_i, 0);
            }
        }
        else {
            if (!discrete_object_p(beg)) {
                rb_raise(rb_eTypeError, "can't iterate from %s",
                         rb_obj_classname(beg));
            }
            if (!NIL_P(end))
                range_each_func(range, each_i, 0);
            else
                for (;; beg = rb_funcallv(beg, id_succ, 0, 0))
                    rb_yield(beg);
        }
    }
    return range;
}
end → object click to toggle source

Returns the object that defines the end of self.

(1..4).end  # => 4
(1...4).end # => 4
(1..).end   # => nil

Related: Range#begin, Range#last.

static VALUE
range_end(VALUE range)
{
    return RANGE_END(range);
}
entries()

Returns an array containing the elements in self, if a finite collection; raises an exception otherwise.

(1..4).to_a     # => [1, 2, 3, 4]
(1...4).to_a    # => [1, 2, 3]
('a'..'d').to_a # => ["a", "b", "c", "d"]

Range#entries is an alias for Range#to_a.

Alias for: to_a
eql?(other) → true or false click to toggle source

Returns true if and only if:

  • other is a range.

  • other.begin eql? self.begin.

  • other.end eql? self.end.

  • other.exclude_end? == self.exclude_end?.

Otherwise returns false.

r = (1..5)
r.eql?(1..5)                  # => true
r = Range.new(1, 5)
r.eql?('foo')                 # => false
r.eql?(2..5)                  # => false
r.eql?(1..4)                  # => false
r.eql?(1...5)                 # => false
r.eql?(Range.new(1, 5, true)) # => false

Note that even with the same argument, the return values of == and eql? can differ:

(1..2) == (1..2.0)   # => true
(1..2).eql? (1..2.0) # => false

Related: Range#==.

static VALUE
range_eql(VALUE range, VALUE obj)
{
    if (range == obj)
        return Qtrue;
    if (!rb_obj_is_kind_of(obj, rb_cRange))
        return Qfalse;
    return rb_exec_recursive_paired(recursive_eql, range, obj, obj);
}
exclude_end? → true or false click to toggle source

Returns true if self excludes its end value; false otherwise:

Range.new(2, 5).exclude_end?       # => false
Range.new(2, 5, true).exclude_end? # => true
(2..5).exclude_end?                # => false
(2...5).exclude_end?               # => true
static VALUE
range_exclude_end_p(VALUE range)
{
    return RBOOL(EXCL(range));
}
first → object click to toggle source
first(n) → array

With no argument, returns the first element of self, if it exists:

(1..4).first     # => 1
('a'..'d').first # => "a"

With non-negative integer argument n given, returns the first n elements in an array:

(1..10).first(3) # => [1, 2, 3]
(1..10).first(0) # => []
(1..4).first(50) # => [1, 2, 3, 4]

Raises an exception if there is no first element:

(..4).first # Raises RangeError
static VALUE
range_first(int argc, VALUE *argv, VALUE range)
{
    VALUE n, ary[2];

    if (NIL_P(RANGE_BEG(range))) {
        rb_raise(rb_eRangeError, "cannot get the first element of beginless range");
    }
    if (argc == 0) return RANGE_BEG(range);

    rb_scan_args(argc, argv, "1", &n);
    ary[0] = n;
    ary[1] = rb_ary_new2(NUM2LONG(n));
    rb_block_call(range, idEach, 0, 0, first_i, (VALUE)ary);

    return ary[1];
}
hash → integer click to toggle source

Returns the integer hash value for self. Two range objects r0 and r1 have the same hash value if and only if r0.eql?(r1).

Related: Range#eql?, Object#hash.

static VALUE
range_hash(VALUE range)
{
    st_index_t hash = EXCL(range);
    VALUE v;

    hash = rb_hash_start(hash);
    v = rb_hash(RANGE_BEG(range));
    hash = rb_hash_uint(hash, NUM2LONG(v));
    v = rb_hash(RANGE_END(range));
    hash = rb_hash_uint(hash, NUM2LONG(v));
    hash = rb_hash_uint(hash, EXCL(range) << 24);
    hash = rb_hash_end(hash);

    return ST2FIX(hash);
}
include?(object) → true or false

Returns true if object is an element of self, false otherwise:

(1..4).include?(2)        # => true
(1..4).include?(5)        # => false
(1..4).include?(4)        # => true
(1...4).include?(4)       # => false
('a'..'d').include?('b')  # => true
('a'..'d').include?('e')  # => false
('a'..'d').include?('B')  # => false
('a'..'d').include?('d')  # => true
('a'...'d').include?('d') # => false

If begin and end are numeric, include? behaves like cover?

(1..3).include?(1.5) # => true
(1..3).cover?(1.5) # => true

But when not numeric, the two methods may differ:

('a'..'d').include?('cc') # => false
('a'..'d').cover?('cc')   # => true

Related: Range#cover?.

Range#member? is an alias for Range#include?.

Alias for: member?
inspect → string click to toggle source

Returns a string representation of self, including begin.inspect and end.inspect:

(1..4).inspect  # => "1..4"
(1...4).inspect # => "1...4"
(1..).inspect   # => "1.."
(..4).inspect   # => "..4"

Note that returns from to_s and inspect may differ:

('a'..'d').to_s    # => "a..d"
('a'..'d').inspect # => "\"a\"..\"d\""

Related: Range#to_s.

static VALUE
range_inspect(VALUE range)
{
    return rb_exec_recursive(inspect_range, range, 0);
}
last → object click to toggle source
last(n) → array

With no argument, returns the last element of self, if it exists:

(1..4).last     # => 4
('a'..'d').last # => "d"

Note that last with no argument returns the end element of self even if exclude_end? is true:

(1...4).last     # => 4
('a'...'d').last # => "d"

With non-negative integer argument n given, returns the last n elements in an array:

(1..10).last(3) # => [8, 9, 10]
(1..10).last(0) # => []
(1..4).last(50) # => [1, 2, 3, 4]

Note that last with argument does not return the end element of self if exclude_end? it true:

(1...4).last(3)     # => [1, 2, 3]
('a'...'d').last(3) # => ["a", "b", "c"]

Raises an exception if there is no last element:

(1..).last # Raises RangeError
static VALUE
range_last(int argc, VALUE *argv, VALUE range)
{
    VALUE b, e;

    if (NIL_P(RANGE_END(range))) {
        rb_raise(rb_eRangeError, "cannot get the last element of endless range");
    }
    if (argc == 0) return RANGE_END(range);

    b = RANGE_BEG(range);
    e = RANGE_END(range);
    if (RB_INTEGER_TYPE_P(b) && RB_INTEGER_TYPE_P(e) &&
        RB_LIKELY(rb_method_basic_definition_p(rb_cRange, idEach))) {
        return rb_int_range_last(argc, argv, range);
    }
    return rb_ary_last(argc, argv, rb_Array(range));
}
max → object click to toggle source
max(n) → array
max {|a, b| ... } → object
max(n) {|a, b| ... } → array

Returns the maximum value in self, using method <=> or a given block for comparison.

With no argument and no block given, returns the maximum-valued element of self.

(1..4).max     # => 4
('a'..'d').max # => "d"
(-4..-1).max   # => -1

With non-negative integer argument n given, and no block given, returns the n maximum-valued elements of self in an array:

(1..4).max(2)     # => [4, 3]
('a'..'d').max(2) # => ["d", "c"]
(-4..-1).max(2)   # => [-1, -2]
(1..4).max(50)    # => [4, 3, 2, 1]

If a block is given, it is called:

  • First, with the first two element of self.

  • Then, sequentially, with the so-far maximum value and the next element of self.

To illustrate:

(1..4).max {|a, b| p [a, b]; a <=> b } # => 4

Output:

[2, 1]
[3, 2]
[4, 3]

With no argument and a block given, returns the return value of the last call to the block:

(1..4).max {|a, b| -(a <=> b) } # => 1

With non-negative integer argument n given, and a block given, returns the return values of the last n calls to the block in an array:

(1..4).max(2) {|a, b| -(a <=> b) }  # => [1, 2]
(1..4).max(50) {|a, b| -(a <=> b) } # => [1, 2, 3, 4]

Returns an empty array if n is zero:

(1..4).max(0)                      # => []
(1..4).max(0) {|a, b| -(a <=> b) } # => []

Returns nil or an empty array if:

  • The begin value of the range is larger than the end value:

    (4..1).max                         # => nil
    (4..1).max(2)                      # => []
    (4..1).max {|a, b| -(a <=> b) }    # => nil
    (4..1).max(2) {|a, b| -(a <=> b) } # => []
    
  • The begin value of an exclusive range is equal to the end value:

    (1...1).max                          # => nil
    (1...1).max(2)                       # => []
    (1...1).max  {|a, b| -(a <=> b) }    # => nil
    (1...1).max(2)  {|a, b| -(a <=> b) } # => []
    

Raises an exception if either:

  • self is a endless range: (1..).

  • A block is given and self is a beginless range.

Related: Range#min, Range#minmax.

static VALUE
range_max(int argc, VALUE *argv, VALUE range)
{
    VALUE e = RANGE_END(range);
    int nm = FIXNUM_P(e) || rb_obj_is_kind_of(e, rb_cNumeric);

    if (NIL_P(RANGE_END(range))) {
        rb_raise(rb_eRangeError, "cannot get the maximum of endless range");
    }

    VALUE b = RANGE_BEG(range);

    if (rb_block_given_p() || (EXCL(range) && !nm) || argc) {
        if (NIL_P(b)) {
            rb_raise(rb_eRangeError, "cannot get the maximum of beginless range with custom comparison method");
        }
        return rb_call_super(argc, argv);
    }
    else {
        struct cmp_opt_data cmp_opt = { 0, 0 };
        int c = NIL_P(b) ? -1 : OPTIMIZED_CMP(b, e, cmp_opt);

        if (c > 0)
            return Qnil;
        if (EXCL(range)) {
            if (!RB_INTEGER_TYPE_P(e)) {
                rb_raise(rb_eTypeError, "cannot exclude non Integer end value");
            }
            if (c == 0) return Qnil;
            if (!RB_INTEGER_TYPE_P(b)) {
                rb_raise(rb_eTypeError, "cannot exclude end value with non Integer begin value");
            }
            if (FIXNUM_P(e)) {
                return LONG2NUM(FIX2LONG(e) - 1);
            }
            return rb_funcall(e, '-', 1, INT2FIX(1));
        }
        return e;
    }
}
member?(object) -> true or false click to toggle source

Returns true if object is an element of self, false otherwise:

(1..4).include?(2)        # => true
(1..4).include?(5)        # => false
(1..4).include?(4)        # => true
(1...4).include?(4)       # => false
('a'..'d').include?('b')  # => true
('a'..'d').include?('e')  # => false
('a'..'d').include?('B')  # => false
('a'..'d').include?('d')  # => true
('a'...'d').include?('d') # => false

If begin and end are numeric, include? behaves like cover?

(1..3).include?(1.5) # => true
(1..3).cover?(1.5) # => true

But when not numeric, the two methods may differ:

('a'..'d').include?('cc') # => false
('a'..'d').cover?('cc')   # => true

Related: Range#cover?.

Range#member? is an alias for Range#include?.

static VALUE
range_include(VALUE range, VALUE val)
{
    VALUE ret = range_include_internal(range, val, 0);
    if (ret != Qundef) return ret;
    return rb_call_super(1, &val);
}
Also aliased as: include?
min → object click to toggle source
min(n) → array
min {|a, b| ... } → object
min(n) {|a, b| ... } → array

Returns the minimum value in self, using method <=> or a given block for comparison.

With no argument and no block given, returns the minimum-valued element of self.

(1..4).min     # => 1
('a'..'d').min # => "a"
(-4..-1).min   # => -4

With non-negative integer argument n given, and no block given, returns the n minimum-valued elements of self in an array:

(1..4).min(2)     # => [1, 2]
('a'..'d').min(2) # => ["a", "b"]
(-4..-1).min(2)   # => [-4, -3]
(1..4).min(50)    # => [1, 2, 3, 4]

If a block is given, it is called:

  • First, with the first two element of self.

  • Then, sequentially, with the so-far minimum value and the next element of self.

To illustrate:

(1..4).min {|a, b| p [a, b]; a <=> b } # => 1

Output:

[2, 1]
[3, 1]
[4, 1]

With no argument and a block given, returns the return value of the last call to the block:

(1..4).min {|a, b| -(a <=> b) } # => 4

With non-negative integer argument n given, and a block given, returns the return values of the last n calls to the block in an array:

(1..4).min(2) {|a, b| -(a <=> b) }  # => [4, 3]
(1..4).min(50) {|a, b| -(a <=> b) } # => [4, 3, 2, 1]

Returns an empty array if n is zero:

(1..4).min(0)                      # => []
(1..4).min(0) {|a, b| -(a <=> b) } # => []

Returns nil or an empty array if:

  • The begin value of the range is larger than the end value:

    (4..1).min                         # => nil
    (4..1).min(2)                      # => []
    (4..1).min {|a, b| -(a <=> b) }    # => nil
    (4..1).min(2) {|a, b| -(a <=> b) } # => []
    
  • The begin value of an exclusive range is equal to the end value:

    (1...1).min                          # => nil
    (1...1).min(2)                       # => []
    (1...1).min  {|a, b| -(a <=> b) }    # => nil
    (1...1).min(2)  {|a, b| -(a <=> b) } # => []
    

Raises an exception if either:

  • self is a beginless range: (..4).

  • A block is given and self is an endless range.

Related: Range#max, Range#minmax.

static VALUE
range_min(int argc, VALUE *argv, VALUE range)
{
    if (NIL_P(RANGE_BEG(range))) {
        rb_raise(rb_eRangeError, "cannot get the minimum of beginless range");
    }

    if (rb_block_given_p()) {
        if (NIL_P(RANGE_END(range))) {
            rb_raise(rb_eRangeError, "cannot get the minimum of endless range with custom comparison method");
        }
        return rb_call_super(argc, argv);
    }
    else if (argc != 0) {
        return range_first(argc, argv, range);
    }
    else {
        struct cmp_opt_data cmp_opt = { 0, 0 };
        VALUE b = RANGE_BEG(range);
        VALUE e = RANGE_END(range);
        int c = NIL_P(e) ? -1 : OPTIMIZED_CMP(b, e, cmp_opt);

        if (c > 0 || (c == 0 && EXCL(range)))
            return Qnil;
        return b;
    }
}
minmax → [object, object] click to toggle source
minmax {|a, b| ... } → [object, object]

Returns a 2-element array containing the minimum and maximum value in self, either according to comparison method <=> or a given block.

With no block given, returns the minimum and maximum values, using <=> for comparison:

(1..4).minmax     # => [1, 4]
(1...4).minmax    # => [1, 3]
('a'..'d').minmax # => ["a", "d"]
(-4..-1).minmax   # => [-4, -1]

With a block given, the block must return an integer:

  • Negative if a is smaller than b.

  • Zero if a and b are equal.

  • Positive if a is larger than b.

The block is called self.size times to compare elements; returns a 2-element Array containing the minimum and maximum values from self, per the block:

(1..4).minmax {|a, b| -(a <=> b) } # => [4, 1]

Returns [nil, nil] if:

  • The begin value of the range is larger than the end value:

    (4..1).minmax                      # => [nil, nil]
    (4..1).minmax {|a, b| -(a <=> b) } # => [nil, nil]
    
  • The begin value of an exclusive range is equal to the end value:

    (1...1).minmax                          # => [nil, nil]
    (1...1).minmax  {|a, b| -(a <=> b) }    # => [nil, nil]
    

Raises an exception if self is a beginless or an endless range.

Related: Range#min, Range#max.

static VALUE
range_minmax(VALUE range)
{
    if (rb_block_given_p()) {
        return rb_call_super(0, NULL);
    }
    return rb_assoc_new(
        rb_funcall(range, id_min, 0),
        rb_funcall(range, id_max, 0)
    );
}
size → non_negative_integer or Infinity or nil click to toggle source

Returns the count of elements in self if both begin and end values are numeric; otherwise, returns nil:

(1..4).size      # => 4
(1...4).size     # => 3
(1..).size       # => Infinity
('a'..'z').size  #=> nil

Related: Range#count.

static VALUE
range_size(VALUE range)
{
    VALUE b = RANGE_BEG(range), e = RANGE_END(range);
    if (rb_obj_is_kind_of(b, rb_cNumeric)) {
        if (rb_obj_is_kind_of(e, rb_cNumeric)) {
            return ruby_num_interval_step_size(b, e, INT2FIX(1), EXCL(range));
        }
        if (NIL_P(e)) {
            return DBL2NUM(HUGE_VAL);
        }
    }
    else if (NIL_P(b)) {
        return DBL2NUM(HUGE_VAL);
    }

    return Qnil;
}
step(n = 1) {|element| ... } → self click to toggle source
step(n = 1) → enumerator

Iterates over the elements of self.

With a block given and no argument, calls the block each element of the range; returns self:

a = []
(1..5).step {|element| a.push(element) } # => 1..5
a # => [1, 2, 3, 4, 5]
a = []
('a'..'e').step {|element| a.push(element) } # => "a".."e"
a # => ["a", "b", "c", "d", "e"]

With a block given and a positive integer argument n given, calls the block with element 0, element n, element 2n, and so on:

a = []
(1..5).step(2) {|element| a.push(element) } # => 1..5
a # => [1, 3, 5]
a = []
('a'..'e').step(2) {|element| a.push(element) } # => "a".."e"
a # => ["a", "c", "e"]

With no block given, returns an enumerator, which will be of class Enumerator::ArithmeticSequence if self is numeric; otherwise of class Enumerator:

e = (1..5).step(2) # => ((1..5).step(2))
e.class            # => Enumerator::ArithmeticSequence
('a'..'e').step # => #<Enumerator: ...>

Related: Range#%.

static VALUE
range_step(int argc, VALUE *argv, VALUE range)
{
    VALUE b, e, step, tmp;

    b = RANGE_BEG(range);
    e = RANGE_END(range);
    step = (!rb_check_arity(argc, 0, 1) ? INT2FIX(1) : argv[0]);

    if (!rb_block_given_p()) {
        if (!rb_obj_is_kind_of(step, rb_cNumeric)) {
            step = rb_to_int(step);
        }
        if (rb_equal(step, INT2FIX(0))) {
            rb_raise(rb_eArgError, "step can't be 0");
        }

        const VALUE b_num_p = rb_obj_is_kind_of(b, rb_cNumeric);
        const VALUE e_num_p = rb_obj_is_kind_of(e, rb_cNumeric);
        if ((b_num_p && (NIL_P(e) || e_num_p)) || (NIL_P(b) && e_num_p)) {
            return rb_arith_seq_new(range, ID2SYM(rb_frame_this_func()), argc, argv,
                    range_step_size, b, e, step, EXCL(range));
        }

        RETURN_SIZED_ENUMERATOR(range, argc, argv, range_step_size);
    }

    step = check_step_domain(step);
    VALUE iter[2] = {INT2FIX(1), step};

    if (FIXNUM_P(b) && NIL_P(e) && FIXNUM_P(step)) {
        long i = FIX2LONG(b), unit = FIX2LONG(step);
        do {
            rb_yield(LONG2FIX(i));
            i += unit;          /* FIXABLE+FIXABLE never overflow */
        } while (FIXABLE(i));
        b = LONG2NUM(i);

        for (;; b = rb_big_plus(b, step))
            rb_yield(b);
    }
    else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(step)) { /* fixnums are special */
        long end = FIX2LONG(e);
        long i, unit = FIX2LONG(step);

        if (!EXCL(range))
            end += 1;
        i = FIX2LONG(b);
        while (i < end) {
            rb_yield(LONG2NUM(i));
            if (i + unit < i) break;
            i += unit;
        }

    }
    else if (SYMBOL_P(b) && (NIL_P(e) || SYMBOL_P(e))) { /* symbols are special */
        b = rb_sym2str(b);
        if (NIL_P(e)) {
            rb_str_upto_endless_each(b, sym_step_i, (VALUE)iter);
        }
        else {
            rb_str_upto_each(b, rb_sym2str(e), EXCL(range), sym_step_i, (VALUE)iter);
        }
    }
    else if (ruby_float_step(b, e, step, EXCL(range), TRUE)) {
        /* done */
    }
    else if (rb_obj_is_kind_of(b, rb_cNumeric) ||
             !NIL_P(rb_check_to_integer(b, "to_int")) ||
             !NIL_P(rb_check_to_integer(e, "to_int"))) {
        ID op = EXCL(range) ? '<' : idLE;
        VALUE v = b;
        int i = 0;

        while (NIL_P(e) || RTEST(rb_funcall(v, op, 1, e))) {
            rb_yield(v);
            i++;
            v = rb_funcall(b, '+', 1, rb_funcall(INT2NUM(i), '*', 1, step));
        }
    }
    else {
        tmp = rb_check_string_type(b);

        if (!NIL_P(tmp)) {
            b = tmp;
            if (NIL_P(e)) {
                rb_str_upto_endless_each(b, step_i, (VALUE)iter);
            }
            else {
                rb_str_upto_each(b, e, EXCL(range), step_i, (VALUE)iter);
            }
        }
        else {
            if (!discrete_object_p(b)) {
                rb_raise(rb_eTypeError, "can't iterate from %s",
                         rb_obj_classname(b));
            }
            range_each_func(range, step_i, (VALUE)iter);
        }
    }
    return range;
}
to_a → array click to toggle source

Returns an array containing the elements in self, if a finite collection; raises an exception otherwise.

(1..4).to_a     # => [1, 2, 3, 4]
(1...4).to_a    # => [1, 2, 3]
('a'..'d').to_a # => ["a", "b", "c", "d"]

Range#entries is an alias for Range#to_a.

static VALUE
range_to_a(VALUE range)
{
    if (NIL_P(RANGE_END(range))) {
        rb_raise(rb_eRangeError, "cannot convert endless range to an array");
    }
    return rb_call_super(0, 0);
}
Also aliased as: entries
to_s → string click to toggle source

Returns a string representation of self, including begin.to_s and end.to_s:

(1..4).to_s  # => "1..4"
(1...4).to_s # => "1...4"
(1..).to_s   # => "1.."
(..4).to_s   # => "..4"

Note that returns from to_s and inspect may differ:

('a'..'d').to_s    # => "a..d"
('a'..'d').inspect # => "\"a\"..\"d\""

Related: Range#inspect.

static VALUE
range_to_s(VALUE range)
{
    VALUE str, str2;

    str = rb_obj_as_string(RANGE_BEG(range));
    str2 = rb_obj_as_string(RANGE_END(range));
    str = rb_str_dup(str);
    rb_str_cat(str, "...", EXCL(range) ? 3 : 2);
    rb_str_append(str, str2);

    return str;
}