class Complex
A complex number can be represented as a paired real number with imaginary unit; a+bi. Where a is real part, b is imaginary part and i is imaginary unit. Real a equals complex a+0i mathematically.
You can create a Complex object explicitly with:
You can convert certain objects to Complex objects with:
-
Method Complex.
Complex
object can be created as literal, and also by using Kernel#Complex
, Complex::rect
, Complex::polar
or to_c
method.
2+1i #=> (2+1i) Complex(1) #=> (1+0i) Complex(2, 3) #=> (2+3i) Complex.polar(2, 3) #=> (-1.9799849932008908+0.2822400161197344i) 3.to_c #=> (3+0i)
You can also create complex object from floating-point numbers or strings.
Complex(0.3) #=> (0.3+0i) Complex('0.3-0.5i') #=> (0.3-0.5i) Complex('2/3+3/4i') #=> ((2/3)+(3/4)*i) Complex('1@2') #=> (-0.4161468365471424+0.9092974268256817i) 0.3.to_c #=> (0.3+0i) '0.3-0.5i'.to_c #=> (0.3-0.5i) '2/3+3/4i'.to_c #=> ((2/3)+(3/4)*i) '1@2'.to_c #=> (-0.4161468365471424+0.9092974268256817i)
A complex object is either an exact or an inexact number.
Complex(1, 1) / 2 #=> ((1/2)+(1/2)*i) Complex(1, 1) / 2.0 #=> (0.5+0.5i)
Constants
- I
The imaginary unit.
Public Class Methods
Returns a complex object which denotes the given polar form.
Complex.polar(3, 0) #=> (3.0+0.0i) Complex.polar(3, Math::PI/2) #=> (1.836909530733566e-16+3.0i) Complex.polar(3, Math::PI) #=> (-3.0+3.673819061467132e-16i) Complex.polar(3, -Math::PI/2) #=> (1.836909530733566e-16-3.0i)
static VALUE nucomp_s_polar(int argc, VALUE *argv, VALUE klass) { VALUE abs, arg; switch (rb_scan_args(argc, argv, "11", &abs, &arg)) { case 1: nucomp_real_check(abs); return nucomp_s_new_internal(klass, abs, ZERO); default: nucomp_real_check(abs); nucomp_real_check(arg); break; } if (RB_TYPE_P(abs, T_COMPLEX)) { get_dat1(abs); abs = dat->real; } if (RB_TYPE_P(arg, T_COMPLEX)) { get_dat1(arg); arg = dat->real; } return f_complex_polar(klass, abs, arg); }
Returns a complex object which denotes the given rectangular form.
Complex.rectangular(1, 2) #=> (1+2i)
static VALUE nucomp_s_new(int argc, VALUE *argv, VALUE klass) { VALUE real, imag; switch (rb_scan_args(argc, argv, "11", &real, &imag)) { case 1: nucomp_real_check(real); imag = ZERO; break; default: nucomp_real_check(real); nucomp_real_check(imag); break; } return nucomp_s_canonicalize_internal(klass, real, imag); }
Returns a complex object which denotes the given rectangular form.
Complex.rectangular(1, 2) #=> (1+2i)
static VALUE nucomp_s_new(int argc, VALUE *argv, VALUE klass) { VALUE real, imag; switch (rb_scan_args(argc, argv, "11", &real, &imag)) { case 1: nucomp_real_check(real); imag = ZERO; break; default: nucomp_real_check(real); nucomp_real_check(imag); break; } return nucomp_s_canonicalize_internal(klass, real, imag); }
Public Instance Methods
Performs multiplication.
Complex(2, 3) * Complex(2, 3) #=> (-5+12i) Complex(900) * Complex(1) #=> (900+0i) Complex(-2, 9) * Complex(-9, 2) #=> (0-85i) Complex(9, 8) * 4 #=> (36+32i) Complex(20, 9) * 9.8 #=> (196.0+88.2i)
VALUE rb_complex_mul(VALUE self, VALUE other) { if (RB_TYPE_P(other, T_COMPLEX)) { VALUE real, imag; get_dat2(self, other); comp_mul(adat->real, adat->imag, bdat->real, bdat->imag, &real, &imag); return f_complex_new2(CLASS_OF(self), real, imag); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return f_complex_new2(CLASS_OF(self), f_mul(dat->real, other), f_mul(dat->imag, other)); } return rb_num_coerce_bin(self, other, '*'); }
Performs exponentiation.
Complex('i') ** 2 #=> (-1+0i) Complex(-8) ** Rational(1, 3) #=> (1.0000000000000002+1.7320508075688772i)
VALUE rb_complex_pow(VALUE self, VALUE other) { if (k_numeric_p(other) && k_exact_zero_p(other)) return f_complex_new_bang1(CLASS_OF(self), ONE); if (RB_TYPE_P(other, T_RATIONAL) && RRATIONAL(other)->den == LONG2FIX(1)) other = RRATIONAL(other)->num; /* c14n */ if (RB_TYPE_P(other, T_COMPLEX)) { get_dat1(other); if (k_exact_zero_p(dat->imag)) other = dat->real; /* c14n */ } if (RB_TYPE_P(other, T_COMPLEX)) { VALUE r, theta, nr, ntheta; get_dat1(other); r = f_abs(self); theta = f_arg(self); nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)), f_mul(dat->imag, theta))); ntheta = f_add(f_mul(theta, dat->real), f_mul(dat->imag, m_log_bang(r))); return f_complex_polar(CLASS_OF(self), nr, ntheta); } if (FIXNUM_P(other)) { long n = FIX2LONG(other); if (n == 0) { return nucomp_s_new_internal(CLASS_OF(self), ONE, ZERO); } if (n < 0) { self = f_reciprocal(self); other = rb_int_uminus(other); n = -n; } { get_dat1(self); VALUE xr = dat->real, xi = dat->imag, zr = xr, zi = xi; if (f_zero_p(xi)) { zr = rb_num_pow(zr, other); } else if (f_zero_p(xr)) { zi = rb_num_pow(zi, other); if (n & 2) zi = f_negate(zi); if (!(n & 1)) { VALUE tmp = zr; zr = zi; zi = tmp; } } else { while (--n) { long q, r; for (; q = n / 2, r = n % 2, r == 0; n = q) { VALUE tmp = f_sub(f_mul(xr, xr), f_mul(xi, xi)); xi = f_mul(f_mul(TWO, xr), xi); xr = tmp; } comp_mul(zr, zi, xr, xi, &zr, &zi); } } return nucomp_s_new_internal(CLASS_OF(self), zr, zi); } } if (k_numeric_p(other) && f_real_p(other)) { VALUE r, theta; if (RB_BIGNUM_TYPE_P(other)) rb_warn("in a**b, b may be too big"); r = f_abs(self); theta = f_arg(self); return f_complex_polar(CLASS_OF(self), f_expt(r, other), f_mul(theta, other)); } return rb_num_coerce_bin(self, other, id_expt); }
Performs addition.
Complex(2, 3) + Complex(2, 3) #=> (4+6i) Complex(900) + Complex(1) #=> (901+0i) Complex(-2, 9) + Complex(-9, 2) #=> (-11+11i) Complex(9, 8) + 4 #=> (13+8i) Complex(20, 9) + 9.8 #=> (29.8+9i)
VALUE rb_complex_plus(VALUE self, VALUE other) { if (RB_TYPE_P(other, T_COMPLEX)) { VALUE real, imag; get_dat2(self, other); real = f_add(adat->real, bdat->real); imag = f_add(adat->imag, bdat->imag); return f_complex_new2(CLASS_OF(self), real, imag); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return f_complex_new2(CLASS_OF(self), f_add(dat->real, other), dat->imag); } return rb_num_coerce_bin(self, other, '+'); }
Performs subtraction.
Complex(2, 3) - Complex(2, 3) #=> (0+0i) Complex(900) - Complex(1) #=> (899+0i) Complex(-2, 9) - Complex(-9, 2) #=> (7+7i) Complex(9, 8) - 4 #=> (5+8i) Complex(20, 9) - 9.8 #=> (10.2+9i)
VALUE rb_complex_minus(VALUE self, VALUE other) { if (RB_TYPE_P(other, T_COMPLEX)) { VALUE real, imag; get_dat2(self, other); real = f_sub(adat->real, bdat->real); imag = f_sub(adat->imag, bdat->imag); return f_complex_new2(CLASS_OF(self), real, imag); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return f_complex_new2(CLASS_OF(self), f_sub(dat->real, other), dat->imag); } return rb_num_coerce_bin(self, other, '-'); }
Returns negation of the value.
-Complex(1, 2) #=> (-1-2i)
VALUE rb_complex_uminus(VALUE self) { get_dat1(self); return f_complex_new2(CLASS_OF(self), f_negate(dat->real), f_negate(dat->imag)); }
Performs division.
Complex(2, 3) / Complex(2, 3) #=> ((1/1)+(0/1)*i) Complex(900) / Complex(1) #=> ((900/1)+(0/1)*i) Complex(-2, 9) / Complex(-9, 2) #=> ((36/85)-(77/85)*i) Complex(9, 8) / 4 #=> ((9/4)+(2/1)*i) Complex(20, 9) / 9.8 #=> (2.0408163265306123+0.9183673469387754i)
VALUE rb_complex_div(VALUE self, VALUE other) { return f_divide(self, other, f_quo, id_quo); }
If cmp
‘s imaginary part is zero, and object
is also a real number (or a Complex
number where the imaginary part is zero), compare the real part of cmp
to object. Otherwise, return nil.
Complex(2, 3) <=> Complex(2, 3) #=> nil Complex(2, 3) <=> 1 #=> nil Complex(2) <=> 1 #=> 1 Complex(2) <=> 2 #=> 0 Complex(2) <=> 3 #=> -1
static VALUE nucomp_cmp(VALUE self, VALUE other) { if (nucomp_real_p(self) && k_numeric_p(other)) { if (RB_TYPE_P(other, T_COMPLEX) && nucomp_real_p(other)) { get_dat2(self, other); return rb_funcall(adat->real, idCmp, 1, bdat->real); } else if (f_real_p(other)) { get_dat1(self); return rb_funcall(dat->real, idCmp, 1, other); } } return Qnil; }
Returns true if cmp equals object numerically.
Complex(2, 3) == Complex(2, 3) #=> true Complex(5) == 5 #=> true Complex(0) == 0.0 #=> true Complex('1/3') == 0.33 #=> false Complex('1/2') == '1/2' #=> false
static VALUE nucomp_eqeq_p(VALUE self, VALUE other) { if (RB_TYPE_P(other, T_COMPLEX)) { get_dat2(self, other); return RBOOL(f_eqeq_p(adat->real, bdat->real) && f_eqeq_p(adat->imag, bdat->imag)); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return RBOOL(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag)); } return RBOOL(f_eqeq_p(other, self)); }
Returns the absolute part of its polar form.
Complex(-1).abs #=> 1 Complex(3.0, -4.0).abs #=> 5.0
VALUE rb_complex_abs(VALUE self) { get_dat1(self); if (f_zero_p(dat->real)) { VALUE a = f_abs(dat->imag); if (RB_FLOAT_TYPE_P(dat->real) && !RB_FLOAT_TYPE_P(dat->imag)) a = f_to_f(a); return a; } if (f_zero_p(dat->imag)) { VALUE a = f_abs(dat->real); if (!RB_FLOAT_TYPE_P(dat->real) && RB_FLOAT_TYPE_P(dat->imag)) a = f_to_f(a); return a; } return rb_math_hypot(dat->real, dat->imag); }
Returns square of the absolute value.
Complex(-1).abs2 #=> 1 Complex(3.0, -4.0).abs2 #=> 25.0
static VALUE nucomp_abs2(VALUE self) { get_dat1(self); return f_add(f_mul(dat->real, dat->real), f_mul(dat->imag, dat->imag)); }
Returns the angle part of its polar form.
Complex.polar(3, Math::PI/2).arg #=> 1.5707963267948966
Returns the angle part of its polar form.
Complex.polar(3, Math::PI/2).arg #=> 1.5707963267948966
VALUE rb_complex_arg(VALUE self) { get_dat1(self); return rb_math_atan2(dat->imag, dat->real); }
Returns the complex conjugate.
Complex(1, 2).conjugate #=> (1-2i)
Returns the complex conjugate.
Complex(1, 2).conjugate #=> (1-2i)
VALUE rb_complex_conjugate(VALUE self) { get_dat1(self); return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag)); }
Returns the denominator (lcm of both denominator - real and imag).
See numerator.
static VALUE nucomp_denominator(VALUE self) { get_dat1(self); return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag)); }
Performs division as each part is a float, never returns a float.
Complex(11, 22).fdiv(3) #=> (3.6666666666666665+7.333333333333333i)
static VALUE nucomp_fdiv(VALUE self, VALUE other) { return f_divide(self, other, f_fdiv, id_fdiv); }
Returns true
if cmp
‘s real and imaginary parts are both finite numbers, otherwise returns false
.
static VALUE rb_complex_finite_p(VALUE self) { get_dat1(self); return RBOOL(f_finite_p(dat->real) && f_finite_p(dat->imag)); }
static VALUE nucomp_hash(VALUE self) { return ST2FIX(rb_complex_hash(self)); }
Returns the imaginary part.
Complex(7).imaginary #=> 0 Complex(9, -4).imaginary #=> -4
Returns the imaginary part.
Complex(7).imaginary #=> 0 Complex(9, -4).imaginary #=> -4
VALUE rb_complex_imag(VALUE self) { get_dat1(self); return dat->imag; }
Returns 1
if cmp
‘s real or imaginary part is an infinite number, otherwise returns nil
.
For example: (1+1i).infinite? #=> nil (Float::INFINITY + 1i).infinite? #=> 1
static VALUE rb_complex_infinite_p(VALUE self) { get_dat1(self); if (!f_infinite_p(dat->real) && !f_infinite_p(dat->imag)) { return Qnil; } return ONE; }
Returns the value as a string for inspection.
Complex(2).inspect #=> "(2+0i)" Complex('-8/6').inspect #=> "((-4/3)+0i)" Complex('1/2i').inspect #=> "(0+(1/2)*i)" Complex(0, Float::INFINITY).inspect #=> "(0+Infinity*i)" Complex(Float::NAN, Float::NAN).inspect #=> "(NaN+NaN*i)"
static VALUE nucomp_inspect(VALUE self) { VALUE s; s = rb_usascii_str_new2("("); rb_str_concat(s, f_format(self, rb_inspect)); rb_str_cat2(s, ")"); return s; }
Returns the absolute part of its polar form.
Complex(-1).abs #=> 1 Complex(3.0, -4.0).abs #=> 5.0
Returns the numerator.
1 2 3+4i <- numerator - + -i -> ---- 2 3 6 <- denominator c = Complex('1/2+2/3i') #=> ((1/2)+(2/3)*i) n = c.numerator #=> (3+4i) d = c.denominator #=> 6 n / d #=> ((1/2)+(2/3)*i) Complex(Rational(n.real, d), Rational(n.imag, d)) #=> ((1/2)+(2/3)*i)
See denominator.
static VALUE nucomp_numerator(VALUE self) { VALUE cd; get_dat1(self); cd = nucomp_denominator(self); return f_complex_new2(CLASS_OF(self), f_mul(f_numerator(dat->real), f_div(cd, f_denominator(dat->real))), f_mul(f_numerator(dat->imag), f_div(cd, f_denominator(dat->imag)))); }
Returns the angle part of its polar form.
Complex.polar(3, Math::PI/2).arg #=> 1.5707963267948966
Returns an array; [cmp.abs, cmp.arg].
Complex(1, 2).polar #=> [2.23606797749979, 1.1071487177940904]
static VALUE nucomp_polar(VALUE self) { return rb_assoc_new(f_abs(self), f_arg(self)); }
Performs division.
Complex(2, 3) / Complex(2, 3) #=> ((1/1)+(0/1)*i) Complex(900) / Complex(1) #=> ((900/1)+(0/1)*i) Complex(-2, 9) / Complex(-9, 2) #=> ((36/85)-(77/85)*i) Complex(9, 8) / 4 #=> ((9/4)+(2/1)*i) Complex(20, 9) / 9.8 #=> (2.0408163265306123+0.9183673469387754i)
VALUE rb_complex_div(VALUE self, VALUE other) { return f_divide(self, other, f_quo, id_quo); }
Returns the value as a rational if possible (the imaginary part should be exactly zero).
Complex(1.0/3, 0).rationalize #=> (1/3) Complex(1, 0.0).rationalize # RangeError Complex(1, 2).rationalize # RangeError
See to_r.
static VALUE nucomp_rationalize(int argc, VALUE *argv, VALUE self) { get_dat1(self); rb_check_arity(argc, 0, 1); if (!k_exact_zero_p(dat->imag)) { rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational", self); } return rb_funcallv(dat->real, id_rationalize, argc, argv); }
Returns the real part.
Complex(7).real #=> 7 Complex(9, -4).real #=> 9
VALUE rb_complex_real(VALUE self) { get_dat1(self); return dat->real; }
Returns false, even if the complex number has no imaginary part.
static VALUE nucomp_real_p_m(VALUE self) { return Qfalse; }
Returns a complex object which denotes the given rectangular form.
Complex.rectangular(1, 2) #=> (1+2i)
Returns an array; [cmp.real, cmp.imag].
Complex(1, 2).rectangular #=> [1, 2]
static VALUE nucomp_rect(VALUE self) { get_dat1(self); return rb_assoc_new(dat->real, dat->imag); }
Returns self.
Complex(2).to_c #=> (2+0i) Complex(-8, 6).to_c #=> (-8+6i)
static VALUE nucomp_to_c(VALUE self) { return self; }
Returns the value as a float if possible (the imaginary part should be exactly zero).
Complex(1, 0).to_f #=> 1.0 Complex(1, 0.0).to_f # RangeError Complex(1, 2).to_f # RangeError
static VALUE nucomp_to_f(VALUE self) { get_dat1(self); if (!k_exact_zero_p(dat->imag)) { rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Float", self); } return f_to_f(dat->real); }
Returns the value as an integer if possible (the imaginary part should be exactly zero).
Complex(1, 0).to_i #=> 1 Complex(1, 0.0).to_i # RangeError Complex(1, 2).to_i # RangeError
static VALUE nucomp_to_i(VALUE self) { get_dat1(self); if (!k_exact_zero_p(dat->imag)) { rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Integer", self); } return f_to_i(dat->real); }
Returns the value as a rational if possible (the imaginary part should be exactly zero).
Complex(1, 0).to_r #=> (1/1) Complex(1, 0.0).to_r # RangeError Complex(1, 2).to_r # RangeError
See rationalize.
static VALUE nucomp_to_r(VALUE self) { get_dat1(self); if (!k_exact_zero_p(dat->imag)) { rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational", self); } return f_to_r(dat->real); }
Returns the value as a string.
Complex(2).to_s #=> "2+0i" Complex('-8/6').to_s #=> "-4/3+0i" Complex('1/2i').to_s #=> "0+1/2i" Complex(0, Float::INFINITY).to_s #=> "0+Infinity*i" Complex(Float::NAN, Float::NAN).to_s #=> "NaN+NaN*i"
static VALUE nucomp_to_s(VALUE self) { return f_format(self, rb_String); }