class Complex
A Complex object houses a pair of values, given when the object is created as either rectangular coordinates or polar coordinates.
Rectangular Coordinates¶ ↑
The rectangular coordinates of a complex number are called the real and imaginary parts; see Complex number definition.
You can create a Complex object from rectangular coordinates with:
-
A complex literal.
-
Method
Complex.rect. -
Method
Kernel#Complex, either with numeric arguments or with certain string arguments. -
Method
String#to_c, for certain strings.
Note that each of the stored parts may be a an instance one of the classes Complex, Float, Integer, or Rational; they may be retrieved:
-
Separately, with methods
Complex#realandComplex#imaginary. -
Together, with method
Complex#rect.
The corresponding (computed) polar values may be retrieved:
-
Separately, with methods
Complex#absandComplex#arg. -
Together, with method
Complex#polar.
Polar Coordinates¶ ↑
The polar coordinates of a complex number are called the absolute and argument parts; see Complex polar plane.
In this class, the argument part in expressed radians (not degrees).
You can create a Complex object from polar coordinates with:
-
Method
Complex.polar. -
Method
Kernel#Complex, with certain string arguments. -
Method
String#to_c, for certain strings.
Note that each of the stored parts may be a an instance one of the classes Complex, Float, Integer, or Rational; they may be retrieved:
-
Separately, with methods
Complex#absandComplex#arg. -
Together, with method
Complex#polar.
The corresponding (computed) rectangular values may be retrieved:
-
Separately, with methods
Complex#realandComplex#imag. -
Together, with method
Complex#rect.
Constants
- I
Equivalent to
Complex(0, 1):Complex::I # => (0+1i)
Public Class Methods
Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric, or an instance of one of its subclasses: Complex, Float, Integer, Rational. Argument arg is given in radians; see Polar Coordinates:
Complex.polar(3) # => (3+0i) Complex.polar(3, 2.0) # => (-1.2484405096414273+2.727892280477045i) Complex.polar(-3, -2.0) # => (1.2484405096414273+2.727892280477045i)
static VALUE
nucomp_s_polar(int argc, VALUE *argv, VALUE klass)
{
VALUE abs, arg;
argc = rb_scan_args(argc, argv, "11", &abs, &arg);
abs = nucomp_real_check(abs);
if (argc == 2) {
arg = nucomp_real_check(arg);
}
else {
arg = ZERO;
}
return f_complex_polar_real(klass, abs, arg);
}
Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric, or an instance of one of its subclasses: Complex, Float, Integer, Rational; see Rectangular Coordinates:
Complex.rect(3) # => (3+0i) Complex.rect(3, Math::PI) # => (3+3.141592653589793i) Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)
Complex.rectangular is an alias for Complex.rect.
static VALUE
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
{
VALUE real, imag;
switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
case 1:
real = nucomp_real_check(real);
imag = ZERO;
break;
default:
real = nucomp_real_check(real);
imag = nucomp_real_check(imag);
break;
}
return nucomp_s_new_internal(klass, real, imag);
}
Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric, or an instance of one of its subclasses: Complex, Float, Integer, Rational; see Rectangular Coordinates:
Complex.rect(3) # => (3+0i) Complex.rect(3, Math::PI) # => (3+3.141592653589793i) Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)
Complex.rectangular is an alias for Complex.rect.
static VALUE
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
{
VALUE real, imag;
switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
case 1:
real = nucomp_real_check(real);
imag = ZERO;
break;
default:
real = nucomp_real_check(real);
imag = nucomp_real_check(imag);
break;
}
return nucomp_s_new_internal(klass, real, imag);
}
Public Instance Methods
Returns the product of self and numeric:
Complex(2, 3) * Complex(2, 3) # => (-5+12i) Complex(900) * Complex(1) # => (900+0i) Complex(-2, 9) * Complex(-9, 2) # => (0-85i) Complex(9, 8) * 4 # => (36+32i) Complex(20, 9) * 9.8 # => (196.0+88.2i)
VALUE
rb_complex_mul(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_COMPLEX)) {
VALUE real, imag;
get_dat2(self, other);
comp_mul(adat->real, adat->imag, bdat->real, bdat->imag, &real, &imag);
return f_complex_new2(CLASS_OF(self), real, imag);
}
if (k_numeric_p(other) && f_real_p(other)) {
get_dat1(self);
return f_complex_new2(CLASS_OF(self),
f_mul(dat->real, other),
f_mul(dat->imag, other));
}
return rb_num_coerce_bin(self, other, '*');
}
Returns self raised to power numeric:
Complex('i') ** 2 # => (-1+0i) Complex(-8) ** Rational(1, 3) # => (1.0000000000000002+1.7320508075688772i)
VALUE
rb_complex_pow(VALUE self, VALUE other)
{
if (k_numeric_p(other) && k_exact_zero_p(other))
return f_complex_new_bang1(CLASS_OF(self), ONE);
if (RB_TYPE_P(other, T_RATIONAL) && RRATIONAL(other)->den == LONG2FIX(1))
other = RRATIONAL(other)->num; /* c14n */
if (RB_TYPE_P(other, T_COMPLEX)) {
get_dat1(other);
if (k_exact_zero_p(dat->imag))
other = dat->real; /* c14n */
}
if (other == ONE) {
get_dat1(self);
return nucomp_s_new_internal(CLASS_OF(self), dat->real, dat->imag);
}
VALUE result = complex_pow_for_special_angle(self, other);
if (result != Qundef) return result;
if (RB_TYPE_P(other, T_COMPLEX)) {
VALUE r, theta, nr, ntheta;
get_dat1(other);
r = f_abs(self);
theta = f_arg(self);
nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)),
f_mul(dat->imag, theta)));
ntheta = f_add(f_mul(theta, dat->real),
f_mul(dat->imag, m_log_bang(r)));
return f_complex_polar(CLASS_OF(self), nr, ntheta);
}
if (FIXNUM_P(other)) {
long n = FIX2LONG(other);
if (n == 0) {
return nucomp_s_new_internal(CLASS_OF(self), ONE, ZERO);
}
if (n < 0) {
self = f_reciprocal(self);
other = rb_int_uminus(other);
n = -n;
}
{
get_dat1(self);
VALUE xr = dat->real, xi = dat->imag, zr = xr, zi = xi;
if (f_zero_p(xi)) {
zr = rb_num_pow(zr, other);
}
else if (f_zero_p(xr)) {
zi = rb_num_pow(zi, other);
if (n & 2) zi = f_negate(zi);
if (!(n & 1)) {
VALUE tmp = zr;
zr = zi;
zi = tmp;
}
}
else {
while (--n) {
long q, r;
for (; q = n / 2, r = n % 2, r == 0; n = q) {
VALUE tmp = f_sub(f_mul(xr, xr), f_mul(xi, xi));
xi = f_mul(f_mul(TWO, xr), xi);
xr = tmp;
}
comp_mul(zr, zi, xr, xi, &zr, &zi);
}
}
return nucomp_s_new_internal(CLASS_OF(self), zr, zi);
}
}
if (k_numeric_p(other) && f_real_p(other)) {
VALUE r, theta;
if (RB_BIGNUM_TYPE_P(other))
rb_warn("in a**b, b may be too big");
r = f_abs(self);
theta = f_arg(self);
return f_complex_polar(CLASS_OF(self), f_expt(r, other),
f_mul(theta, other));
}
return rb_num_coerce_bin(self, other, id_expt);
}
Returns the sum of self and numeric:
Complex(2, 3) + Complex(2, 3) # => (4+6i) Complex(900) + Complex(1) # => (901+0i) Complex(-2, 9) + Complex(-9, 2) # => (-11+11i) Complex(9, 8) + 4 # => (13+8i) Complex(20, 9) + 9.8 # => (29.8+9i)
VALUE
rb_complex_plus(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_COMPLEX)) {
VALUE real, imag;
get_dat2(self, other);
real = f_add(adat->real, bdat->real);
imag = f_add(adat->imag, bdat->imag);
return f_complex_new2(CLASS_OF(self), real, imag);
}
if (k_numeric_p(other) && f_real_p(other)) {
get_dat1(self);
return f_complex_new2(CLASS_OF(self),
f_add(dat->real, other), dat->imag);
}
return rb_num_coerce_bin(self, other, '+');
}
Returns the difference of self and numeric:
Complex(2, 3) - Complex(2, 3) # => (0+0i) Complex(900) - Complex(1) # => (899+0i) Complex(-2, 9) - Complex(-9, 2) # => (7+7i) Complex(9, 8) - 4 # => (5+8i) Complex(20, 9) - 9.8 # => (10.2+9i)
VALUE
rb_complex_minus(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_COMPLEX)) {
VALUE real, imag;
get_dat2(self, other);
real = f_sub(adat->real, bdat->real);
imag = f_sub(adat->imag, bdat->imag);
return f_complex_new2(CLASS_OF(self), real, imag);
}
if (k_numeric_p(other) && f_real_p(other)) {
get_dat1(self);
return f_complex_new2(CLASS_OF(self),
f_sub(dat->real, other), dat->imag);
}
return rb_num_coerce_bin(self, other, '-');
}
Returns the negation of self, which is the negation of each of its parts:
-Complex(1, 2) # => (-1-2i) -Complex(-1, -2) # => (1+2i)
VALUE
rb_complex_uminus(VALUE self)
{
get_dat1(self);
return f_complex_new2(CLASS_OF(self),
f_negate(dat->real), f_negate(dat->imag));
}
Returns the quotient of self and numeric:
Complex(2, 3) / Complex(2, 3) # => ((1/1)+(0/1)*i) Complex(900) / Complex(1) # => ((900/1)+(0/1)*i) Complex(-2, 9) / Complex(-9, 2) # => ((36/85)-(77/85)*i) Complex(9, 8) / 4 # => ((9/4)+(2/1)*i) Complex(20, 9) / 9.8 # => (2.0408163265306123+0.9183673469387754i)
VALUE
rb_complex_div(VALUE self, VALUE other)
{
return f_divide(self, other, f_quo, id_quo);
}
Returns:
-
self.real <=> object.realif both of the following are true:-
self.imag == 0. -
object.imag == 0. # Always true if object is numeric but not complex.
-
-
nilotherwise.
Examples:
Complex(2) <=> 3 # => -1 Complex(2) <=> 2 # => 0 Complex(2) <=> 1 # => 1 Complex(2, 1) <=> 1 # => nil # self.imag not zero. Complex(1) <=> Complex(1, 1) # => nil # object.imag not zero. Complex(1) <=> 'Foo' # => nil # object.imag not defined.
static VALUE
nucomp_cmp(VALUE self, VALUE other)
{
if (!k_numeric_p(other)) {
return rb_num_coerce_cmp(self, other, idCmp);
}
if (!nucomp_real_p(self)) {
return Qnil;
}
if (RB_TYPE_P(other, T_COMPLEX)) {
if (nucomp_real_p(other)) {
get_dat2(self, other);
return rb_funcall(adat->real, idCmp, 1, bdat->real);
}
}
else {
get_dat1(self);
if (f_real_p(other)) {
return rb_funcall(dat->real, idCmp, 1, other);
}
else {
return rb_num_coerce_cmp(dat->real, other, idCmp);
}
}
return Qnil;
}
Returns true if self.real == object.real and self.imag == object.imag:
Complex(2, 3) == Complex(2.0, 3.0) # => true
static VALUE
nucomp_eqeq_p(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_COMPLEX)) {
get_dat2(self, other);
return RBOOL(f_eqeq_p(adat->real, bdat->real) &&
f_eqeq_p(adat->imag, bdat->imag));
}
if (k_numeric_p(other) && f_real_p(other)) {
get_dat1(self);
return RBOOL(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag));
}
return RBOOL(f_eqeq_p(other, self));
}
Returns the absolute value (magnitude) for self; see polar coordinates:
Complex.polar(-1, 0).abs # => 1.0
If self was created with rectangular coordinates, the returned value is computed, and may be inexact:
Complex.rectangular(1, 1).abs # => 1.4142135623730951 # The square root of 2.
VALUE
rb_complex_abs(VALUE self)
{
get_dat1(self);
if (f_zero_p(dat->real)) {
VALUE a = f_abs(dat->imag);
if (RB_FLOAT_TYPE_P(dat->real) && !RB_FLOAT_TYPE_P(dat->imag))
a = f_to_f(a);
return a;
}
if (f_zero_p(dat->imag)) {
VALUE a = f_abs(dat->real);
if (!RB_FLOAT_TYPE_P(dat->real) && RB_FLOAT_TYPE_P(dat->imag))
a = f_to_f(a);
return a;
}
return rb_math_hypot(dat->real, dat->imag);
}
Returns square of the absolute value (magnitude) for self; see polar coordinates:
Complex.polar(2, 2).abs2 # => 4.0
If self was created with rectangular coordinates, the returned value is computed, and may be inexact:
Complex.rectangular(1.0/3, 1.0/3).abs2 # => 0.2222222222222222
static VALUE
nucomp_abs2(VALUE self)
{
get_dat1(self);
return f_add(f_mul(dat->real, dat->real),
f_mul(dat->imag, dat->imag));
}
Returns the argument (angle) for self in radians; see polar coordinates:
Complex.polar(3, Math::PI/2).arg # => 1.57079632679489660
If self was created with rectangular coordinates, the returned value is computed, and may be inexact:
Complex.polar(1, 1.0/3).arg # => 0.33333333333333326
Returns the argument (angle) for self in radians; see polar coordinates:
Complex.polar(3, Math::PI/2).arg # => 1.57079632679489660
If self was created with rectangular coordinates, the returned value is computed, and may be inexact:
Complex.polar(1, 1.0/3).arg # => 0.33333333333333326
VALUE
rb_complex_arg(VALUE self)
{
get_dat1(self);
return rb_math_atan2(dat->imag, dat->real);
}
Returns the conjugate of self, Complex.rect(self.imag, self.real):
Complex.rect(1, 2).conj # => (1-2i)
Returns the conjugate of self, Complex.rect(self.imag, self.real):
Complex.rect(1, 2).conj # => (1-2i)
VALUE
rb_complex_conjugate(VALUE self)
{
get_dat1(self);
return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
}
Returns the denominator of self, which is the least common multiple of self.real.denominator and self.imag.denominator:
Complex.rect(Rational(1, 2), Rational(2, 3)).denominator # => 6
Note that n.denominator of a non-rational numeric is 1.
Related: Complex#numerator.
static VALUE
nucomp_denominator(VALUE self)
{
get_dat1(self);
return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag));
}
Returns Complex(self.real/numeric, self.imag/numeric):
Complex(11, 22).fdiv(3) # => (3.6666666666666665+7.333333333333333i)
static VALUE
nucomp_fdiv(VALUE self, VALUE other)
{
return f_divide(self, other, f_fdiv, id_fdiv);
}
Returns true if both self.real.finite? and self.imag.finite? are true, false otherwise:
Complex(1, 1).finite? # => true Complex(Float::INFINITY, 0).finite? # => false
Related: Numeric#finite?, Float#finite?.
static VALUE
rb_complex_finite_p(VALUE self)
{
get_dat1(self);
return RBOOL(f_finite_p(dat->real) && f_finite_p(dat->imag));
}
Returns the integer hash value for self.
Two Complex objects created from the same values will have the same hash value (and will compare using eql?):
Complex(1, 2).hash == Complex(1, 2).hash # => true
static VALUE
nucomp_hash(VALUE self)
{
return ST2FIX(rb_complex_hash(self));
}
Returns the imaginary value for self:
Complex(7).imaginary #=> 0 Complex(9, -4).imaginary #=> -4
If self was created with polar coordinates, the returned value is computed, and may be inexact:
Complex.polar(1, Math::PI/4).imag # => 0.7071067811865476 # Square root of 2.
Returns the imaginary value for self:
Complex(7).imaginary #=> 0 Complex(9, -4).imaginary #=> -4
If self was created with polar coordinates, the returned value is computed, and may be inexact:
Complex.polar(1, Math::PI/4).imag # => 0.7071067811865476 # Square root of 2.
VALUE
rb_complex_imag(VALUE self)
{
get_dat1(self);
return dat->imag;
}
Returns 1 if either self.real.infinite? or self.imag.infinite? is true, nil otherwise:
Complex(Float::INFINITY, 0).infinite? # => 1 Complex(1, 1).infinite? # => nil
Related: Numeric#infinite?, Float#infinite?.
static VALUE
rb_complex_infinite_p(VALUE self)
{
get_dat1(self);
if (!f_infinite_p(dat->real) && !f_infinite_p(dat->imag)) {
return Qnil;
}
return ONE;
}
Returns a string representation of self:
Complex(2).inspect # => "(2+0i)" Complex('-8/6').inspect # => "((-4/3)+0i)" Complex('1/2i').inspect # => "(0+(1/2)*i)" Complex(0, Float::INFINITY).inspect # => "(0+Infinity*i)" Complex(Float::NAN, Float::NAN).inspect # => "(NaN+NaN*i)"
static VALUE
nucomp_inspect(VALUE self)
{
VALUE s;
s = rb_usascii_str_new2("(");
rb_str_concat(s, f_format(self, rb_inspect));
rb_str_cat2(s, ")");
return s;
}
Returns the absolute value (magnitude) for self; see polar coordinates:
Complex.polar(-1, 0).abs # => 1.0
If self was created with rectangular coordinates, the returned value is computed, and may be inexact:
Complex.rectangular(1, 1).abs # => 1.4142135623730951 # The square root of 2.
Returns the Complex object created from the numerators of the real and imaginary parts of self, after converting each part to the lowest common denominator of the two:
c = Complex(Rational(2, 3), Rational(3, 4)) # => ((2/3)+(3/4)*i) c.numerator # => (8+9i)
In this example, the lowest common denominator of the two parts is 12; the two converted parts may be thought of as Rational(8, 12) and Rational(9, 12), whose numerators, respectively, are 8 and 9; so the returned value of c.numerator is Complex(8, 9).
Related: Complex#denominator.
static VALUE
nucomp_numerator(VALUE self)
{
VALUE cd;
get_dat1(self);
cd = nucomp_denominator(self);
return f_complex_new2(CLASS_OF(self),
f_mul(f_numerator(dat->real),
f_div(cd, f_denominator(dat->real))),
f_mul(f_numerator(dat->imag),
f_div(cd, f_denominator(dat->imag))));
}
Returns the argument (angle) for self in radians; see polar coordinates:
Complex.polar(3, Math::PI/2).arg # => 1.57079632679489660
If self was created with rectangular coordinates, the returned value is computed, and may be inexact:
Complex.polar(1, 1.0/3).arg # => 0.33333333333333326
Returns the array [self.abs, self.arg]:
Complex.polar(1, 2).polar # => [1.0, 2.0]
See Polar Coordinates.
If self was created with rectangular coordinates, the returned value is computed, and may be inexact:
Complex.rect(1, 1).polar # => [1.4142135623730951, 0.7853981633974483]
static VALUE
nucomp_polar(VALUE self)
{
return rb_assoc_new(f_abs(self), f_arg(self));
}
Returns the quotient of self and numeric:
Complex(2, 3) / Complex(2, 3) # => ((1/1)+(0/1)*i) Complex(900) / Complex(1) # => ((900/1)+(0/1)*i) Complex(-2, 9) / Complex(-9, 2) # => ((36/85)-(77/85)*i) Complex(9, 8) / 4 # => ((9/4)+(2/1)*i) Complex(20, 9) / 9.8 # => (2.0408163265306123+0.9183673469387754i)
VALUE
rb_complex_div(VALUE self, VALUE other)
{
return f_divide(self, other, f_quo, id_quo);
}
Returns a Rational object whose value is exactly or approximately equivalent to that of self.real.
With no argument epsilon given, returns a Rational object whose value is exactly equal to that of self.real.rationalize:
Complex(1, 0).rationalize # => (1/1) Complex(1, Rational(0, 1)).rationalize # => (1/1) Complex(3.14159, 0).rationalize # => (314159/100000)
With argument epsilon given, returns a Rational object whose value is exactly or approximately equal to that of self.real to the given precision:
Complex(3.14159, 0).rationalize(0.1) # => (16/5) Complex(3.14159, 0).rationalize(0.01) # => (22/7) Complex(3.14159, 0).rationalize(0.001) # => (201/64) Complex(3.14159, 0).rationalize(0.0001) # => (333/106) Complex(3.14159, 0).rationalize(0.00001) # => (355/113) Complex(3.14159, 0).rationalize(0.000001) # => (7433/2366) Complex(3.14159, 0).rationalize(0.0000001) # => (9208/2931) Complex(3.14159, 0).rationalize(0.00000001) # => (47460/15107) Complex(3.14159, 0).rationalize(0.000000001) # => (76149/24239) Complex(3.14159, 0).rationalize(0.0000000001) # => (314159/100000) Complex(3.14159, 0).rationalize(0.0) # => (3537115888337719/1125899906842624)
Related: Complex#to_r.
static VALUE
nucomp_rationalize(int argc, VALUE *argv, VALUE self)
{
get_dat1(self);
rb_check_arity(argc, 0, 1);
if (!k_exact_zero_p(dat->imag)) {
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
self);
}
return rb_funcallv(dat->real, id_rationalize, argc, argv);
}
Returns the real value for self:
Complex(7).real #=> 7 Complex(9, -4).real #=> 9
If self was created with polar coordinates, the returned value is computed, and may be inexact:
Complex.polar(1, Math::PI/4).real # => 0.7071067811865476 # Square root of 2.
VALUE
rb_complex_real(VALUE self)
{
get_dat1(self);
return dat->real;
}
Returns false; for compatibility with Numeric#real?.
static VALUE
nucomp_real_p_m(VALUE self)
{
return Qfalse;
}
Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric, or an instance of one of its subclasses: Complex, Float, Integer, Rational; see Rectangular Coordinates:
Complex.rect(3) # => (3+0i) Complex.rect(3, Math::PI) # => (3+3.141592653589793i) Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)
Complex.rectangular is an alias for Complex.rect.
Returns the array [self.real, self.imag]:
Complex.rect(1, 2).rect # => [1, 2]
If self was created with polar coordinates, the returned value is computed, and may be inexact:
Complex.polar(1.0, 1.0).rect # => [0.5403023058681398, 0.8414709848078965]
Complex#rectangular is an alias for Complex#rect.
static VALUE
nucomp_rect(VALUE self)
{
get_dat1(self);
return rb_assoc_new(dat->real, dat->imag);
}
Returns self.
static VALUE
nucomp_to_c(VALUE self)
{
return self;
}
Returns the value of self.real as a Float, if possible:
Complex(1, 0).to_f # => 1.0 Complex(1, Rational(0, 1)).to_f # => 1.0
Raises RangeError if self.imag is not exactly zero (either Integer(0) or Rational(0, n)).
static VALUE
nucomp_to_f(VALUE self)
{
get_dat1(self);
if (!k_exact_zero_p(dat->imag)) {
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Float",
self);
}
return f_to_f(dat->real);
}
Returns the value of self.real as an Integer, if possible:
Complex(1, 0).to_i # => 1 Complex(1, Rational(0, 1)).to_i # => 1
Raises RangeError if self.imag is not exactly zero (either Integer(0) or Rational(0, n)).
static VALUE
nucomp_to_i(VALUE self)
{
get_dat1(self);
if (!k_exact_zero_p(dat->imag)) {
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Integer",
self);
}
return f_to_i(dat->real);
}
Returns the value of self.real as a Rational, if possible:
Complex(1, 0).to_r # => (1/1) Complex(1, Rational(0, 1)).to_r # => (1/1)
Raises RangeError if self.imag is not exactly zero (either Integer(0) or Rational(0, n)).
Related: Complex#rationalize.
static VALUE
nucomp_to_r(VALUE self)
{
get_dat1(self);
if (!k_exact_zero_p(dat->imag)) {
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
self);
}
return f_to_r(dat->real);
}
Returns a string representation of self:
Complex(2).to_s # => "2+0i" Complex('-8/6').to_s # => "-4/3+0i" Complex('1/2i').to_s # => "0+1/2i" Complex(0, Float::INFINITY).to_s # => "0+Infinity*i" Complex(Float::NAN, Float::NAN).to_s # => "NaN+NaN*i"
static VALUE
nucomp_to_s(VALUE self)
{
return f_format(self, rb_String);
}