Maintenance of Ruby 2.0.0 ended on February 24, 2016. Read more
Object
The Matrix class represents a mathematical matrix. It provides
methods for creating matrices, operating on them arithmetically and
algebraically, and determining their mathematical properties (trace, rank,
inverse, determinant).
To create a matrix:
::rows(rows, copy = true)
::build(row_count, #column_count, &block)
::scalar(n, value)
Matrix.I(n)
To access Matrix elements/columns/rows/submatrices/properties:
[](i, j)
row_count (row_size)
column_count (column_size)
Properties of a matrix:
Matrix arithmetic:
Matrix functions:
Matrix decompositions:
Complex arithmetic:
conj
conjugate
imag
imaginary
real
rect
rectangular
Conversion to other data types:
String representations:
Creates a matrix where each argument is a row.
Matrix[ [25, 93], [-1, 66] ]
=> 25 93
-1 66
# File matrix.rb, line 139
def Matrix.[](*rows)
rows(rows, false)
end
Creates a matrix of size row_count x
column_count. It fills the values by calling the given block,
passing the current row and column. Returns an enumerator if no block is
given.
m = Matrix.build(2, 4) {|row, col| col - row }
=> Matrix[[0, 1, 2, 3], [-1, 0, 1, 2]]
m = Matrix.build(3) { rand }
=> a 3x3 matrix with random elements
# File matrix.rb, line 184
def Matrix.build(row_count, column_count = row_count)
row_count = CoercionHelper.coerce_to_int(row_count)
column_count = CoercionHelper.coerce_to_int(column_count)
raise ArgumentError if row_count < 0 || column_count < 0
return to_enum :build, row_count, column_count unless block_given?
rows = Array.new(row_count) do |i|
Array.new(column_count) do |j|
yield i, j
end
end
new rows, column_count
end
Creates a single-column matrix where the values of that column are as given
in column.
Matrix.column_vector([4,5,6])
=> 4
5
6
# File matrix.rb, line 269
def Matrix.column_vector(column)
column = convert_to_array(column)
new [column].transpose, 1
end
Creates a matrix using columns as an array of column vectors.
Matrix.columns([[25, 93], [-1, 66]])
=> 25 -1
93 66
# File matrix.rb, line 169
def Matrix.columns(columns)
rows(columns, false).transpose
end
Creates a matrix where the diagonal elements are composed of
values.
Matrix.diagonal(9, 5, -3)
=> 9 0 0
0 5 0
0 0 -3
# File matrix.rb, line 204
def Matrix.diagonal(*values)
size = values.size
rows = Array.new(size) {|j|
row = Array.new(size, 0)
row[j] = values[j]
row
}
new rows
end
Creates a empty matrix of row_count x
column_count. At least one of row_count or
column_count must be 0.
m = Matrix.empty(2, 0) m == Matrix[ [], [] ] => true n = Matrix.empty(0, 3) n == Matrix.columns([ [], [], [] ]) => true m * n => Matrix[[0, 0, 0], [0, 0, 0]]
# File matrix.rb, line 287
def Matrix.empty(row_count = 0, column_count = 0)
raise ArgumentError, "One size must be 0" if column_count != 0 && row_count != 0
raise ArgumentError, "Negative size" if column_count < 0 || row_count < 0
new([[]]*row_count, column_count)
end
Creates an n by n identity matrix.
Matrix.identity(2)
=> 1 0
0 1
# File matrix.rb, line 231
def Matrix.identity(n)
scalar(n, 1)
end
::new is private; use ::rows, columns, [], etc… to create.
# File matrix.rb, line 297
def initialize(rows, column_count = rows[0].size)
# No checking is done at this point. rows must be an Array of Arrays.
# column_count must be the size of the first row, if there is one,
# otherwise it *must* be specified and can be any integer >= 0
@rows = rows
@column_count = column_count
end
Creates a single-row matrix where the values of that row are as given in
row.
Matrix.row_vector([4,5,6]) => 4 5 6
# File matrix.rb, line 256
def Matrix.row_vector(row)
row = convert_to_array(row)
new [row]
end
Creates a matrix where rows is an array of arrays, each of
which is a row of the matrix. If the optional argument copy
is false, use the given arrays as the internal structure of the matrix
without copying.
Matrix.rows([[25, 93], [-1, 66]])
=> 25 93
-1 66
# File matrix.rb, line 151
def Matrix.rows(rows, copy = true)
rows = convert_to_array(rows)
rows.map! do |row|
convert_to_array(row, copy)
end
size = (rows[0] || []).size
rows.each do |row|
raise ErrDimensionMismatch, "row size differs (#{row.size} should be #{size})" unless row.size == size
end
new rows, size
end
Matrix multiplication.
Matrix[[2,4], [6,8]] * Matrix.identity(2)
=> 2 4
6 8
# File matrix.rb, line 805
def *(m) # m is matrix or vector or number
case(m)
when Numeric
rows = @rows.collect {|row|
row.collect {|e| e * m }
}
return new_matrix rows, column_count
when Vector
m = self.class.column_vector(m)
r = self * m
return r.column(0)
when Matrix
Matrix.Raise ErrDimensionMismatch if column_count != m.row_count
rows = Array.new(row_count) {|i|
Array.new(m.column_count) {|j|
(0 ... column_count).inject(0) do |vij, k|
vij + self[i, k] * m[k, j]
end
}
}
return new_matrix rows, m.column_count
else
return apply_through_coercion(m, __method__)
end
end
Matrix exponentiation. Equivalent to multiplying the matrix by itself N times. Non integer exponents will be handled by diagonalizing the matrix.
Matrix[[7,6], [3,9]] ** 2
=> 67 96
48 99
# File matrix.rb, line 972
def ** (other)
case other
when Integer
x = self
if other <= 0
x = self.inverse
return self.class.identity(self.column_count) if other == 0
other = -other
end
z = nil
loop do
z = z ? z * x : x if other[0] == 1
return z if (other >>= 1).zero?
x *= x
end
when Numeric
v, d, v_inv = eigensystem
v * self.class.diagonal(*d.each(:diagonal).map{|e| e ** other}) * v_inv
else
Matrix.Raise ErrOperationNotDefined, "**", self.class, other.class
end
end
Matrix addition.
Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]]
=> 6 0
-4 12
# File matrix.rb, line 838
def +(m)
case m
when Numeric
Matrix.Raise ErrOperationNotDefined, "+", self.class, m.class
when Vector
m = self.class.column_vector(m)
when Matrix
else
return apply_through_coercion(m, __method__)
end
Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count and column_count == m.column_count
rows = Array.new(row_count) {|i|
Array.new(column_count) {|j|
self[i, j] + m[i, j]
}
}
new_matrix rows, column_count
end
Matrix subtraction.
Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]]
=> -8 2
8 1
# File matrix.rb, line 865
def -(m)
case m
when Numeric
Matrix.Raise ErrOperationNotDefined, "-", self.class, m.class
when Vector
m = self.class.column_vector(m)
when Matrix
else
return apply_through_coercion(m, __method__)
end
Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count and column_count == m.column_count
rows = Array.new(row_count) {|i|
Array.new(column_count) {|j|
self[i, j] - m[i, j]
}
}
new_matrix rows, column_count
end
Matrix division (multiplication by the inverse).
Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]]
=> -7 1
-3 -6
# File matrix.rb, line 892
def /(other)
case other
when Numeric
rows = @rows.collect {|row|
row.collect {|e| e / other }
}
return new_matrix rows, column_count
when Matrix
return self * other.inverse
else
return apply_through_coercion(other, __method__)
end
end
Returns true if and only if the two matrices contain equal
elements.
# File matrix.rb, line 767
def ==(other)
return false unless Matrix === other &&
column_count == other.column_count # necessary for empty matrices
rows == other.rows
end
Returns element (i,j) of the matrix. That is:
row i, column j.
# File matrix.rb, line 313
def [](i, j)
@rows.fetch(i){return nil}[j]
end
Returns a clone of the matrix, so that the contents of each do not reference identical objects. There should be no good reason to do this since Matrices are immutable.
# File matrix.rb, line 784
def clone
new_matrix @rows.map(&:dup), column_count
end
The coerce method provides support for Ruby type coercion. This coercion mechanism is used by Ruby to handle mixed-type numeric operations: it is intended to find a compatible common type between the two operands of the operator. See also Numeric#coerce.
# File matrix.rb, line 1277
def coerce(other)
case other
when Numeric
return Scalar.new(other), self
else
raise TypeError, "#{self.class} can't be coerced into #{other.class}"
end
end
Returns a matrix that is the result of iteration of the given block over all elements of the matrix.
Matrix[ [1,2], [3,4] ].collect { |e| e**2 }
=> 1 4
9 16
# File matrix.rb, line 381
def collect(&block) # :yield: e
return to_enum(:collect) unless block_given?
rows = @rows.collect{|row| row.collect(&block)}
new_matrix rows, column_count
end
Returns column vector number j of the matrix as a Vector (starting at 0 like an array). When a block
is given, the elements of that vector are iterated.
# File matrix.rb, line 358
def column(j) # :yield: e
if block_given?
return self if j >= column_count || j < -column_count
row_count.times do |i|
yield @rows[i][j]
end
self
else
return nil if j >= column_count || j < -column_count
col = Array.new(row_count) {|i|
@rows[i][j]
}
Vector.elements(col, false)
end
end
Returns an array of the column vectors of the matrix. See Vector.
# File matrix.rb, line 1298
def column_vectors
Array.new(column_count) {|i|
column(i)
}
end
Returns the conjugate of the matrix.
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
=> 1+2i i 0
1 2 3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate
=> 1-2i -i 0
1 2 3
# File matrix.rb, line 1223
def conjugate
collect(&:conjugate)
end
Returns the determinant of the matrix.
Beware that using Float values can yield erroneous results because of their lack of precision. Consider using exact types like Rational or BigDecimal instead.
Matrix[[7,6], [3,9]].determinant => 45
# File matrix.rb, line 1009
def determinant
Matrix.Raise ErrDimensionMismatch unless square?
m = @rows
case row_count
# Up to 4x4, give result using Laplacian expansion by minors.
# This will typically be faster, as well as giving good results
# in case of Floats
when 0
+1
when 1
+ m[0][0]
when 2
+ m[0][0] * m[1][1] - m[0][1] * m[1][0]
when 3
m0, m1, m2 = m
+ m0[0] * m1[1] * m2[2] - m0[0] * m1[2] * m2[1] \
- m0[1] * m1[0] * m2[2] + m0[1] * m1[2] * m2[0] \
+ m0[2] * m1[0] * m2[1] - m0[2] * m1[1] * m2[0]
when 4
m0, m1, m2, m3 = m
+ m0[0] * m1[1] * m2[2] * m3[3] - m0[0] * m1[1] * m2[3] * m3[2] \
- m0[0] * m1[2] * m2[1] * m3[3] + m0[0] * m1[2] * m2[3] * m3[1] \
+ m0[0] * m1[3] * m2[1] * m3[2] - m0[0] * m1[3] * m2[2] * m3[1] \
- m0[1] * m1[0] * m2[2] * m3[3] + m0[1] * m1[0] * m2[3] * m3[2] \
+ m0[1] * m1[2] * m2[0] * m3[3] - m0[1] * m1[2] * m2[3] * m3[0] \
- m0[1] * m1[3] * m2[0] * m3[2] + m0[1] * m1[3] * m2[2] * m3[0] \
+ m0[2] * m1[0] * m2[1] * m3[3] - m0[2] * m1[0] * m2[3] * m3[1] \
- m0[2] * m1[1] * m2[0] * m3[3] + m0[2] * m1[1] * m2[3] * m3[0] \
+ m0[2] * m1[3] * m2[0] * m3[1] - m0[2] * m1[3] * m2[1] * m3[0] \
- m0[3] * m1[0] * m2[1] * m3[2] + m0[3] * m1[0] * m2[2] * m3[1] \
+ m0[3] * m1[1] * m2[0] * m3[2] - m0[3] * m1[1] * m2[2] * m3[0] \
- m0[3] * m1[2] * m2[0] * m3[1] + m0[3] * m1[2] * m2[1] * m3[0]
else
# For bigger matrices, use an efficient and general algorithm.
# Currently, we use the Gauss-Bareiss algorithm
determinant_bareiss
end
end
deprecated; use #determinant
# File matrix.rb, line 1091
def determinant_e
warn "#{caller(1)[0]}: warning: Matrix#determinant_e is deprecated; use #determinant"
determinant
end
Returns true is this is a diagonal matrix. Raises an error if
matrix is not square.
# File matrix.rb, line 599
def diagonal?
Matrix.Raise ErrDimensionMismatch unless square?
each(:off_diagonal).all?(&:zero?)
end
Yields all elements of the matrix, starting with those of the first row, or returns an Enumerator is no block given. Elements can be restricted by passing an argument:
:all (default): yields all elements
:diagonal: yields only elements on the diagonal
:off_diagonal: yields all elements except on the diagonal
:lower: yields only elements on or below the diagonal
:strict_lower: yields only elements below the diagonal
:strict_upper: yields only elements above the diagonal
:upper: yields only elements on or above the diagonal
Matrix[ [1,2], [3,4] ].each { |e| puts e }
# => prints the numbers 1 to 4
Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3]
# File matrix.rb, line 404
def each(which = :all) # :yield: e
return to_enum :each, which unless block_given?
last = column_count - 1
case which
when :all
block = Proc.new
@rows.each do |row|
row.each(&block)
end
when :diagonal
@rows.each_with_index do |row, row_index|
yield row.fetch(row_index){return self}
end
when :off_diagonal
@rows.each_with_index do |row, row_index|
column_count.times do |col_index|
yield row[col_index] unless row_index == col_index
end
end
when :lower
@rows.each_with_index do |row, row_index|
0.upto([row_index, last].min) do |col_index|
yield row[col_index]
end
end
when :strict_lower
@rows.each_with_index do |row, row_index|
[row_index, column_count].min.times do |col_index|
yield row[col_index]
end
end
when :strict_upper
@rows.each_with_index do |row, row_index|
(row_index+1).upto(last) do |col_index|
yield row[col_index]
end
end
when :upper
@rows.each_with_index do |row, row_index|
row_index.upto(last) do |col_index|
yield row[col_index]
end
end
else
raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
end
self
end
Same as each, but the row index and column index in addition to the element
Matrix[ [1,2], [3,4] ].each_with_index do |e, row, col| puts "#{e} at #{row}, #{col}" end # => Prints: # 1 at 0, 0 # 2 at 0, 1 # 3 at 1, 0 # 4 at 1, 1
# File matrix.rb, line 465
def each_with_index(which = :all) # :yield: e, row, column
return to_enum :each_with_index, which unless block_given?
last = column_count - 1
case which
when :all
@rows.each_with_index do |row, row_index|
row.each_with_index do |e, col_index|
yield e, row_index, col_index
end
end
when :diagonal
@rows.each_with_index do |row, row_index|
yield row.fetch(row_index){return self}, row_index, row_index
end
when :off_diagonal
@rows.each_with_index do |row, row_index|
column_count.times do |col_index|
yield row[col_index], row_index, col_index unless row_index == col_index
end
end
when :lower
@rows.each_with_index do |row, row_index|
0.upto([row_index, last].min) do |col_index|
yield row[col_index], row_index, col_index
end
end
when :strict_lower
@rows.each_with_index do |row, row_index|
[row_index, column_count].min.times do |col_index|
yield row[col_index], row_index, col_index
end
end
when :strict_upper
@rows.each_with_index do |row, row_index|
(row_index+1).upto(last) do |col_index|
yield row[col_index], row_index, col_index
end
end
when :upper
@rows.each_with_index do |row, row_index|
row_index.upto(last) do |col_index|
yield row[col_index], row_index, col_index
end
end
else
raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
end
self
end
Returns the Eigensystem of the matrix; see
EigenvalueDecomposition.
m = Matrix[[1, 2], [3, 4]] v, d, v_inv = m.eigensystem d.diagonal? # => true v.inv == v_inv # => true (v * d * v_inv).round(5) == m # => true
# File matrix.rb, line 1190
def eigensystem
EigenvalueDecomposition.new(self)
end
# File matrix.rb, line 1311
def elements_to_f
warn "#{caller(1)[0]}: warning: Matrix#elements_to_f is deprecated, use map(&:to_f)"
map(&:to_f)
end
# File matrix.rb, line 1316
def elements_to_i
warn "#{caller(1)[0]}: warning: Matrix#elements_to_i is deprecated, use map(&:to_i)"
map(&:to_i)
end
# File matrix.rb, line 1321
def elements_to_r
warn "#{caller(1)[0]}: warning: Matrix#elements_to_r is deprecated, use map(&:to_r)"
map(&:to_r)
end
Returns true if this is an empty matrix, i.e. if the number of
rows or the number of columns is 0.
# File matrix.rb, line 608
def empty?
column_count == 0 || row_count == 0
end
# File matrix.rb, line 773
def eql?(other)
return false unless Matrix === other &&
column_count == other.column_count # necessary for empty matrices
rows.eql? other.rows
end
Returns a hash-code for the matrix.
# File matrix.rb, line 791
def hash
@rows.hash
end
Returns true is this is an hermitian matrix. Raises an error
if matrix is not square.
# File matrix.rb, line 616
def hermitian?
Matrix.Raise ErrDimensionMismatch unless square?
each_with_index(:upper).all? do |e, row, col|
e == rows[col][row].conj
end
end
Returns the imaginary part of the matrix.
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
=> 1+2i i 0
1 2 3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].imaginary
=> 2i i 0
0 0 0
# File matrix.rb, line 1237
def imaginary
collect(&:imaginary)
end
The index method is specialized to return the index as [row, column] It
also accepts an optional selector argument, see each for details.
Matrix[ [1,2], [3,4] ].index(&:even?) # => [0, 1] Matrix[ [1,1], [1,1] ].index(1, :strict_lower) # => [1, 0]
# File matrix.rb, line 528
def index(*args)
raise ArgumentError, "wrong number of arguments(#{args.size} for 0-2)" if args.size > 2
which = (args.size == 2 || SELECTORS.include?(args.last)) ? args.pop : :all
return to_enum :find_index, which, *args unless block_given? || args.size == 1
if args.size == 1
value = args.first
each_with_index(which) do |e, row_index, col_index|
return row_index, col_index if e == value
end
else
each_with_index(which) do |e, row_index, col_index|
return row_index, col_index if yield e
end
end
nil
end
Overrides Object#inspect
# File matrix.rb, line 1346
def inspect
if empty?
"#{self.class}.empty(#{row_count}, #{column_count})"
else
"#{self.class}#{@rows.inspect}"
end
end
Returns the inverse of the matrix.
Matrix[[-1, -1], [0, -1]].inverse
=> -1 1
0 -1
# File matrix.rb, line 912
def inverse
Matrix.Raise ErrDimensionMismatch unless square?
self.class.I(row_count).send(:inverse_from, self)
end
Returns true is this is a lower triangular matrix.
# File matrix.rb, line 626
def lower_triangular?
each(:strict_upper).all?(&:zero?)
end
Returns the LUP decomposition of the matrix; see
LUPDecomposition.
a = Matrix[[1, 2], [3, 4]] l, u, p = a.lup l.lower_triangular? # => true u.upper_triangular? # => true p.permutation? # => true l * u == p * a # => true a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
# File matrix.rb, line 1205
def lup
LUPDecomposition.new(self)
end
Returns a section of the matrix. The parameters are either:
start_row, nrows, start_col, ncols; OR
row_range, col_range
Matrix.diagonal(9, 5, -3).minor(0..1, 0..2)
=> 9 0 0
0 5 0
Like Array#[], negative indices count backward from the end of the row or column (-1 is the last element). Returns nil if the starting row or column is greater than #row_count or #column_count respectively.
# File matrix.rb, line 558
def minor(*param)
case param.size
when 2
row_range, col_range = param
from_row = row_range.first
from_row += row_count if from_row < 0
to_row = row_range.end
to_row += row_count if to_row < 0
to_row += 1 unless row_range.exclude_end?
size_row = to_row - from_row
from_col = col_range.first
from_col += column_count if from_col < 0
to_col = col_range.end
to_col += column_count if to_col < 0
to_col += 1 unless col_range.exclude_end?
size_col = to_col - from_col
when 4
from_row, size_row, from_col, size_col = param
return nil if size_row < 0 || size_col < 0
from_row += row_count if from_row < 0
from_col += column_count if from_col < 0
else
raise ArgumentError, param.inspect
end
return nil if from_row > row_count || from_col > column_count || from_row < 0 || from_col < 0
rows = @rows[from_row, size_row].collect{|row|
row[from_col, size_col]
}
new_matrix rows, [column_count - from_col, size_col].min
end
Returns true is this is a normal matrix. Raises an error if
matrix is not square.
# File matrix.rb, line 634
def normal?
Matrix.Raise ErrDimensionMismatch unless square?
rows.each_with_index do |row_i, i|
rows.each_with_index do |row_j, j|
s = 0
rows.each_with_index do |row_k, k|
s += row_i[k] * row_j[k].conj - row_k[i].conj * row_k[j]
end
return false unless s == 0
end
end
true
end
Returns true is this is an orthogonal matrix Raises an error
if matrix is not square.
# File matrix.rb, line 652
def orthogonal?
Matrix.Raise ErrDimensionMismatch unless square?
rows.each_with_index do |row, i|
column_count.times do |j|
s = 0
row_count.times do |k|
s += row[k] * rows[k][j]
end
return false unless s == (i == j ? 1 : 0)
end
end
true
end
Returns true is this is a permutation matrix Raises an error
if matrix is not square.
# File matrix.rb, line 670
def permutation?
Matrix.Raise ErrDimensionMismatch unless square?
cols = Array.new(column_count)
rows.each_with_index do |row, i|
found = false
row.each_with_index do |e, j|
if e == 1
return false if found || cols[j]
found = cols[j] = true
elsif e != 0
return false
end
end
return false unless found
end
true
end
Returns the rank of the matrix. Beware that using Float values can yield erroneous results because of their lack of precision. Consider using exact types like Rational or BigDecimal instead.
Matrix[[7,6], [3,9]].rank => 2
# File matrix.rb, line 1106
def rank
# We currently use Bareiss' multistep integer-preserving gaussian elimination
# (see comments on determinant)
a = to_a
last_column = column_count - 1
last_row = row_count - 1
pivot_row = 0
previous_pivot = 1
0.upto(last_column) do |k|
switch_row = (pivot_row .. last_row).find {|row|
a[row][k] != 0
}
if switch_row
a[switch_row], a[pivot_row] = a[pivot_row], a[switch_row] unless pivot_row == switch_row
pivot = a[pivot_row][k]
(pivot_row+1).upto(last_row) do |i|
ai = a[i]
(k+1).upto(last_column) do |j|
ai[j] = (pivot * ai[j] - ai[k] * a[pivot_row][j]) / previous_pivot
end
end
pivot_row += 1
previous_pivot = pivot
end
end
pivot_row
end
deprecated; use #rank
# File matrix.rb, line 1137
def rank_e
warn "#{caller(1)[0]}: warning: Matrix#rank_e is deprecated; use #rank"
rank
end
Returns the real part of the matrix.
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
=> 1+2i i 0
1 2 3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].real
=> 1 0 0
1 2 3
# File matrix.rb, line 1251
def real
collect(&:real)
end
Returns true if all entries of the matrix are real.
# File matrix.rb, line 691
def real?
all?(&:real?)
end
Returns an array containing matrices corresponding to the real and imaginary parts of the matrix
m.rect == [m.real, m.imag] # ==> true for all matrices m
# File matrix.rb, line 1261
def rect
[real, imag]
end
Returns true if this is a regular (i.e. non-singular) matrix.
# File matrix.rb, line 698
def regular?
not singular?
end
Returns a matrix with entries rounded to the given precision (see Float#round)
# File matrix.rb, line 1145
def round(ndigits=0)
map{|e| e.round(ndigits)}
end
Returns row vector number i of the matrix as a Vector (starting at 0 like an array). When a block
is given, the elements of that vector are iterated.
# File matrix.rb, line 344
def row(i, &block) # :yield: e
if block_given?
@rows.fetch(i){return self}.each(&block)
self
else
Vector.elements(@rows.fetch(i){return nil})
end
end
Returns the number of rows.
# File matrix.rb, line 329
def row_count
@rows.size
end
Returns an array of the row vectors of the matrix. See Vector.
# File matrix.rb, line 1289
def row_vectors
Array.new(row_count) {|i|
row(i)
}
end
Returns true is this is a singular matrix.
# File matrix.rb, line 705
def singular?
determinant == 0
end
Returns true is this is a square matrix.
# File matrix.rb, line 712
def square?
column_count == row_count
end
Returns true is this is a symmetric matrix. Raises an error if
matrix is not square.
# File matrix.rb, line 720
def symmetric?
Matrix.Raise ErrDimensionMismatch unless square?
each_with_index(:strict_upper) do |e, row, col|
return false if e != rows[col][row]
end
true
end
Returns an array of arrays that describe the rows of the matrix.
# File matrix.rb, line 1307
def to_a
@rows.collect(&:dup)
end
Overrides Object#to_s
# File matrix.rb, line 1333
def to_s
if empty?
"#{self.class}.empty(#{row_count}, #{column_count})"
else
"#{self.class}[" + @rows.collect{|row|
"[" + row.collect{|e| e.to_s}.join(", ") + "]"
}.join(", ")+"]"
end
end
Returns the trace (sum of diagonal elements) of the matrix.
Matrix[[7,6], [3,9]].trace => 16
# File matrix.rb, line 1154
def trace
Matrix.Raise ErrDimensionMismatch unless square?
(0...column_count).inject(0) do |tr, i|
tr + @rows[i][i]
end
end
Returns the transpose of the matrix.
Matrix[[1,2], [3,4], [5,6]]
=> 1 2
3 4
5 6
Matrix[[1,2], [3,4], [5,6]].transpose
=> 1 3 5
2 4 6
# File matrix.rb, line 1172
def transpose
return self.class.empty(column_count, 0) if row_count.zero?
new_matrix @rows.transpose, row_count
end
Returns true is this is a unitary matrix Raises an error if
matrix is not square.
# File matrix.rb, line 732
def unitary?
Matrix.Raise ErrDimensionMismatch unless square?
rows.each_with_index do |row, i|
column_count.times do |j|
s = 0
row_count.times do |k|
s += row[k].conj * rows[k][j]
end
return false unless s == (i == j ? 1 : 0)
end
end
true
end