### In Files

• bigdecimal/lib/bigdecimal/math.rb

Quicksearch

# BigMath

Provides mathematical functions.

Example:

```require "bigdecimal"
require "bigdecimal/math"

include BigMath

a = BigDecimal((PI(100)/2).to_s)
puts sin(a,100) # -> 0.10000000000000000000......E1
```

### Public Instance Methods

E(prec) click to toggle source

Computes e (the base of natural logarithms) to the specified number of digits of precision.

```
# File bigdecimal/lib/bigdecimal/math.rb, line 220
def E(prec)
raise ArgumentError, "Zero or negative precision for E" if prec <= 0
n    = prec + BigDecimal.double_fig
one  = BigDecimal("1")
y  = one
d  = y
z  = one
i  = 0
while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
m = BigDecimal.double_fig if m < BigDecimal.double_fig
i += 1
z *= i
d  = one.div(z,m)
y += d
end
y
end
```
PI(prec) click to toggle source

Computes the value of pi to the specified number of digits of precision.

```
# File bigdecimal/lib/bigdecimal/math.rb, line 180
def PI(prec)
raise ArgumentError, "Zero or negative argument for PI" if prec <= 0
n      = prec + BigDecimal.double_fig
zero   = BigDecimal("0")
one    = BigDecimal("1")
two    = BigDecimal("2")

m25    = BigDecimal("-0.04")
m57121 = BigDecimal("-57121")

pi     = zero

d = one
k = one
w = one
t = BigDecimal("-80")
while d.nonzero? && ((m = n - (pi.exponent - d.exponent).abs) > 0)
m = BigDecimal.double_fig if m < BigDecimal.double_fig
t   = t*m25
d   = t.div(k,m)
k   = k+two
pi  = pi + d
end

d = one
k = one
w = one
t = BigDecimal("956")
while d.nonzero? && ((m = n - (pi.exponent - d.exponent).abs) > 0)
m = BigDecimal.double_fig if m < BigDecimal.double_fig
t   = t.div(m57121,n)
d   = t.div(k,m)
pi  = pi + d
k   = k+two
end
pi
end
```
atan(x, prec) click to toggle source

Computes the arctangent of x to the specified number of digits of precision.

If x is infinite or NaN, returns NaN. Raises an argument error if x > 1.

```
# File bigdecimal/lib/bigdecimal/math.rb, line 105
def atan(x, prec)
raise ArgumentError, "Zero or negative precision for atan" if prec <= 0
return BigDecimal("NaN") if x.infinite? || x.nan?
raise ArgumentError, "x.abs must be less than 1.0" if x.abs>=1
n    = prec + BigDecimal.double_fig
y = x
d = y
t = x
r = BigDecimal("3")
x2 = x.mult(x,n)
while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
m = BigDecimal.double_fig if m < BigDecimal.double_fig
t = -t.mult(x2,n)
d = t.div(r,m)
y += d
r += 2
end
y
end
```
cos(x, prec) click to toggle source

Computes the cosine of x to the specified number of digits of precision.

If x is infinite or NaN, returns NaN.

```
# File bigdecimal/lib/bigdecimal/math.rb, line 76
def cos(x, prec)
raise ArgumentError, "Zero or negative precision for cos" if prec <= 0
return BigDecimal("NaN") if x.infinite? || x.nan?
n    = prec + BigDecimal.double_fig
one  = BigDecimal("1")
two  = BigDecimal("2")
x1 = one
x2 = x.mult(x,n)
sign = 1
y = one
d = y
i = BigDecimal("0")
z = one
while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
m = BigDecimal.double_fig if m < BigDecimal.double_fig
sign = -sign
x1  = x2.mult(x1,n)
i  += two
z  *= (i-one) * i
d   = sign * x1.div(z,m)
y  += d
end
y
end
```
exp(x, prec) click to toggle source

Computes the value of e (the base of natural logarithms) raised to the power of x, to the specified number of digits of precision.

If x is infinite or NaN, returns NaN.

BigMath::exp(BigDecimal.new(‘1’), 10).to_s -> “0.271828182845904523536028752390026306410273E1”

```
# File bigdecimal/lib/bigdecimal/math.rb, line 132
def exp(x, prec)
raise ArgumentError, "Zero or negative precision for exp" if prec <= 0
return BigDecimal("NaN") if x.infinite? || x.nan?
n    = prec + BigDecimal.double_fig
one  = BigDecimal("1")
x1 = one
y  = one
d  = y
z  = one
i  = 0
while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
m = BigDecimal.double_fig if m < BigDecimal.double_fig
x1  = x1.mult(x,n)
i += 1
z *= i
d  = x1.div(z,m)
y += d
end
y
end
```
log(x, prec) click to toggle source

Computes the natural logarithm of x to the specified number of digits of precision.

Returns x if x is infinite or NaN.

```
# File bigdecimal/lib/bigdecimal/math.rb, line 158
def log(x, prec)
raise ArgumentError, "Zero or negative argument for log" if x <= 0 || prec <= 0
return x if x.infinite? || x.nan?
one = BigDecimal("1")
two = BigDecimal("2")
n  = prec + BigDecimal.double_fig
x  = (x - one).div(x + one,n)
x2 = x.mult(x,n)
y  = x
d  = y
i = one
while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
m = BigDecimal.double_fig if m < BigDecimal.double_fig
x  = x2.mult(x,n)
i += two
d  = x.div(i,m)
y += d
end
y*two
end
```
sin(x, prec) click to toggle source

Computes the sine of x to the specified number of digits of precision.

If x is infinite or NaN, returns NaN.

```
# File bigdecimal/lib/bigdecimal/math.rb, line 48
def sin(x, prec)
raise ArgumentError, "Zero or negative precision for sin" if prec <= 0
return BigDecimal("NaN") if x.infinite? || x.nan?
n    = prec + BigDecimal.double_fig
one  = BigDecimal("1")
two  = BigDecimal("2")
x1   = x
x2   = x.mult(x,n)
sign = 1
y    = x
d    = y
i    = one
z    = one
while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
m = BigDecimal.double_fig if m < BigDecimal.double_fig
sign = -sign
x1  = x2.mult(x1,n)
i  += two
z  *= (i-one) * i
d   = sign * x1.div(z,m)
y  += d
end
y
end
```
sqrt(x,prec) click to toggle source

Computes the square root of x to the specified number of digits of precision.

BigDecimal.new('2').sqrt(16).to_s

`-> "0.14142135623730950488016887242096975E1"`
```
# File bigdecimal/lib/bigdecimal/math.rb, line 41
def sqrt(x,prec)
x.sqrt(prec)
end
```

Commenting is here to help enhance the documentation. For example, code samples, or clarification of the documentation.

If you have questions about Ruby or the documentation, please post to one of the Ruby mailing lists. You will get better, faster, help that way.

If you wish to post a correction of the docs, please do so, but also file bug report so that it can be corrected for the next release. Thank you.

If you want to help improve the Ruby documentation, please visit Documenting-ruby.org.