Gnome’s Guide to WEBTrick

Yohanes Santoso jggwijat; microjet.ath.cx;,

Version 0.6, 2004.09.19

Abstract

So, you installed Ruby 1.8. So, you wanted to do some web develop-
ment. So, you heard about this thing called WEBrick that comes standard
with Ruby. So, you googled for documentation. So, all you could find was
Eric Hodel’s articles. So, you thought, ”Gosh, where is the documenta-
tion?”. So, you were feeling brave and tried to "use the source, Luke”.
So, you realised that you were a newbie to Ruby and the source looked
like Yoda doing Yoga while chanting ”may the force be with you”. So,
you didn’t think the force would be with you for at least another week.
So, you were feeling impatient because you want to start trying now and
perhaps you could have practised the force while trying. So, you finally
screamed, "I've had it!”.

So, I hope you will find this adequate to start and accompany you
during your journey into WEBrick. There is also the reference section
which you can refer to when you are lost or unsure, or both.

Note: this documentation references the WEBrick code shipped with
Ruby 1.8.1.

Contents

1 What is WEBrick

WEBErick is a HTTP server library written by TAKAHASHI Masayoshi, GOTOU
Yuuzou, along with patches contributed various Ruby users and developers. It
started from an article entitled “Internet Programming with Ruby” in a Japan-
ese network engineering magazine “OpenDesign”. And now, it is part of the
Ruby 1.8 standard library.

You can use WEBTrick to create HTTP-based server or application. You may
use also use it as a base for building web-application frameworks like TOWA|
Tofu, and many others.

It can also be used to build non-HTTP server, like the Daytime Server
example in the WEBrick home page, although that would be a pity since you
would not be able to use WEBrick’s support for the HT'TP protocol.

http://segment7.net/projects/ruby/WEBrick/index.html
http://enigo.com/projects/iowa/index.html
http://pub.cozmixng.org/~the-rwiki/rw-cgi.rb?cmd=view;name=Tofu
http://www.webrick.org

In the web-application paradigm, WEBrick is quite low-level. It does not
know about “web application”, for starter. “user interaction session” is also a
foreign concept.

All it knows are servlets. As far as it concerns, each servlet is independent
from the others. If there are many servlets working together to provide a web
application, guess who should provide the glue? You! If you want to track
a user’s interaction through the servlets, guess who should provide the code?
You! If you need those functionalities, I recommend using IOWA or Tofu or
others. Other people have took pain to provide that additional layers on top of
WERBTrick, so you do not have to re-invent the wheel.

A simple WEBrick invocation
require ’webrick’
server = WEBrick::HTTPServer.new

#

You would want to mount handlers here. Read further to know what
handlers are.

#

trap signals to invoke the shutdown procedure cleanly
[’INT’, *TERM’].each {|signal| trap(signal) {server.shutdown}}

server.start

The above example will start WEBrick with the default configuration, in-
cluding the configuration that tells it to listen on port 80. Now, let us try to
override some of the configuration:

1. Listen on port 8080 instead of port 80 (for the rest of this documentation,
the default listening port is port 8080 since I already reserve port 80 for
the Apache HTTP Server that always runs on my machine.

2. Serve files from the directory /var/www

To do the above, one would need to pass the appropriate configuration when
instantiating the HTTPServer. Since for the rest of this document we are going
to modify the configuration and instantiate HTTPServer quite frequently, let us
also ease that process by defining a method that does all that.

require ’webrick’

include WEBrick # let’s import the namespace so I don’t have to
keep typing WEBrick:: in this documentation.

def start_webrick(config = {})

config.update(:Port => 8080) # always listen on port 8080
server = HTTPServer.new(config)

yield server if block_given?

[’INT’, °TERM’].each {|signall| trap(signal) {server.shutdownl}}
server.start

end

start_webrick(:DocumentRoot => ’/var/www’)

Output:
dede:”$ w3m —dump http://localhost:8080
Index of /
Name Last modified Size
Parent Directory 2004/07/18 06:51 -
docbook-dsssl/ 2003/10/15 00:30 -
pub/ 2004/05/24 15:46 -

WEBrick/1.3.1 (Ruby/1.8.1/2004-02-03)
at localhost:8080

2 Mounting Servlets

In WEBFrick terminology, mounting means setting up an instance of a subclass
of HTTPServlet: :AbstractServlet a.k.a “servlet” to service a request-URI.

When mounting a servlet, one should specify the prefix of the request-URI
it services. If there are more than one mounts that match the request-URI,
the one with the closest match is selected. For example: a servlet mounted
at /foo would probably service the request-URI /foo/bar/is/foolish, but if
there is another servlet mounted at /foo/bar, then that servlet would be the
one selected instead.

To mount the servlet, specify the mount the path along with the class of the
servlet. WEBTrick creates a new instance from the servlet class for each request
it receives, and executes it in a separate thread.

class FooServlet < HTTPServlet::AbstractServlet
end
class FooBarServlet < HTTPServlet::AbstractServlet

end

start_webrick {|server|
server.mount (’/foo’, FooServlet)
server.mount(’/foo/bar’, FooBarServlet)

}

3 Standard Servlets

WEBErick comes with several servlets that you can use right away.

e HTTPServlet: :FileHandler
e HTTPServlet: :ProcHandler
e HTTPServlet::CGIHandler

e HTTPServlet: :ERBHandler

3.1 FileHandler

FileHandler is one of the more useful standard servlets. If you specified the
:DocumentRoot option, WEBrick will install a FileHandler configured to serve
the path specified in the option. Roughly, WEBrick automate the following for
you when you set the :DocumentRoot option.

The example shown in an earlier section,

start_webrick(:DocumentRoot => ’/var/www’)
is functionally similar to

start_webrick {|server|
doc_root = ’/var/www’
server.mount ("/", HTTPServlet::FileHandler, doc_root,
{:FancyIndexing=>truel})

}

The above example pass the :FancyIndexing option to the FileHandler
servlet. There are more options described in the FileHandler Configuration
section.

If the request path refers to a directory, FileHandler serves the directory
index file. If there is no directory index file, and the :FancyIndexing option is
specified, it will serves the directory listing, otherwise it will return a 403 status
(Forbidden)

3.1.1 Overriding Default MIME Type

FileHandler needs to know the mime-type of the file so it can set the Content-Type
header in the HTTP response properly. For that purpose, it derives the MIME
type of a file by matching the filename extension with a table of ext => mimetype.
The default table is in Utils: :DefaultMimeTypes and is adequate for many oc-
casions.

However, should you find it to be inadequate, or perhaps you want to use
the Apache-style mime type file in your system (usually at /etc/mime.types),
then you can configure WEBTrick to use that.

system_mime_table = Utils::load_mime_types(’/etc/mime.types’)
my_mime_table = system_mime_table.update({ "foo" => "application/foo" })

start_webrick(:MimeTypes => my_mime_table)

3.1.2 Default File Handler

When FileHandler receives a request, it analyse the request path. It will
delegates the request handling to DefaultFileHandler if the request path:

e does not end with .cgi, or

e does not end with .rhtml

DefaultFileHandler emits a ETag header based on the file’s inode (what is
the inode value in non-Unix, nil?), size and modification time. It understands
some other the request headers. Below is a list the HTTP headers it services
along with the corresponding explanation from the HTTP/1.1 RFC.

if-modified-since The If-Modified-Since request-header field is used with a
method to make it conditional: if the requested variant has not been
modified since the time specified in this field, an entity will not be returned
from the server; instead, a 304 (not modified) response will be returned
without any message-body.

if-none-match The If-None-Match request-header field is used with a method
to make it conditional. A client that has one or more entities previously
obtained from the resource can verify that none of those entities is current
by including a list of their associated entity tags in the If-None-Match
header field. The purpose of this feature is to allow efficient updates of
cached information with a minimum amount of transaction overhead. It
is also used to prevent a method (e.g. PUT) from inadvertently modifying
an existing resource when the client believes that the resource does not
exist.

if-range If a client has a partial copy of an entity in its cache, and wishes to
have an up-to-date copy of the entire entity in its cache, it could use the

Range request-header with a conditional GET (using either or both of If-
Unmodified-Since and If-Match.) However, if the condition fails because
the entity has been modified, the client would then have to make a second
request to obtain the entire current entity-body.

The If-Range header allows a client to ”short-circuit” the second request.
Informally, its meaning is ‘if the entity is unchanged, send me the part(s)
that I am missing; otherwise, send me the entire new entity’.

range The presence of a Range header in an unconditional GET modifies what
is returned if the GET is otherwise successful. In other words, the response
carries a status code of 206 (Partial Content) instead of 200 (OK).

The presence of a Range header in a conditional GET (a request using
one or both of If-Modified-Since and If-None-Match, or one or both of
If-Unmodified-Since and If-Match) modifies what is returned if the GET
is otherwise successful and the condition is true. It does not affect the 304
(Not Modified) response returned if the conditional is false.

3.2 CGIHandler

What if you have some CGI programs that you do not want or do not have
the time to rewrite as WEBrick servlets? Worry not for you can still use them.
Simply install a FileHandler on the directory containing your CGIls and make
sure that the program files have a .cgi suffix.

start_webrick {|server|
cgi_dir = File.expand_path(’“ysantoso/public_html/cgi-bin’)
server.mount ("/cgi-bin", HTTPServlet::FileHandler, cgi_dir, {:FancyIndexing=>truel})

3

dede:"$ cat “ysantoso/public_html/cgi-bin/test.cgi
#!/usr/bin/env ruby

print "Content-type: text/plain\r\n\r\n"
ENV.keys.sort.each{|k| puts "#{k} ==> #{ENV[k]}"}

dede:”$ w3m —dump http://localhost:8080/cgi-bin/test.cgi
GATEWAY_INTERFACE ==> CGI/1.1

HTTP_ACCEPT ==> text/*, image/*, application/*, video/*, audio/*, message/*
HTTP_ACCEPT_ENCODING ==> gzip, compress, bzip, bzip2, deflate
HTTP_ACCEPT_LANGUAGE ==> en;q=1.0

HTTP_HOST ==> localhost:8080

HTTP_USER_AGENT ==> w3m/0.5.1

PATH_INFQ ==

QUERY_STRING ==

REMOTE_ADDR ==> 127.0.0.1

REMOTE_HOST ==> dede

REQUEST_METHOD ==> GET

REQUEST_URI ==> http://localhost:8080/cgi-bin/test.cgi
SCRIPT_FILENAME ==> /home/ysantoso/public_html/cgi-bin/test.cgi
SCRIPT_NAME ==> /cgi-bin/test.cgi

SERVER_NAME ==> localhost

SERVER_PORT ==> 8080

SERVER_PROTOCOL ==> HTTP/1.1

SERVER_SOFTWARE ==> WEBrick/1.3.1 (Ruby/1.8.1/2004-02-03)

When FileHandler sees that the request path ends with .cgi, it delegates
the request to CGIHandler. Then, CGIHandler setup the necessary CGl-related
environment variables and run the requested CGI program. The CGI program
can affect the HT'TP response status returned by WEBrick by setting the header
”status” to the desired response number.

dede:~$ cat “ysantoso/public_html/cgi-bin/test.410.cgi

#!/usr/bin/ruby

print "Status: 410"

print "Content-type: text/plain\r\n\r\n"

puts "Tired. Frustrated. Too many requests. Gone fishing. Be back after 5pm."

dede:"$ w3m -dump_extra http://localhost:8080/cgi-bin/test.410.cgi
W3m-current-url: http://localhost:8080/cgi-bin/test.410.cgi
W3m-document-charset: US-ASCII

HTTP/1.1 410 Gone

Connection: close

Date: Sun, 19 Sep 2004 22:33:25 GMT

Server: WEBrick/1.3.1 (Ruby/1.8.1/2004-02-03)

Content-Length: 71

Tired. Frustrated. Too many requests. Gone fishing. Be back after 5pm.

Warning: CGIHandler waits until the called CGI process finishes. If your
CGI performs incremental output, the output will not be sent back to client
until after the CGI process exits. I have been told by someone (I know the
name but I do not want to mention it because I do not want to push him to
commit to this) that he will try to get another CGI handler, that sends back
the output immediately, for inclusion in Ruby 1.8.2.

3.3 ERBHandler !NOT YET.
I have no idea what ERB is.

3.4 ProcHandler

WEBTrick allows you to be lazy. If your need is trivial and can be expressed
in a simple Proc or a block, then you don’t have to bother with subclassing
AbstractServlet.

start_webrick {l|server|
server.mount_proc(’/myblock’) {lreq, resp| resp.body = ’a block mounted at #{req.script_n:

my_wonderful_proc = Proc.new {|req, resp| resp.body = ’my wonderful proc mounted at #{req
server .mount_proc(’/myproc’, my_wonderful_proc)

server.mount (’ /myprochandler’, HTTPServlet::ProcHandler.new(my_wonderful_proc))

}
Output:

dede:”$ w3m —dump http://localhost:8080/myblock

a block mounted at /myblock

dede:”$ w3m —dump http://localhost:8080/myproc

my wonderful proc mounted at /myproc

dede:"$ w3m -dump http://localhost:8080/myprochandler
my wonderful proc mounted at /myprochandler

4 Writing a Custom Servlet
4.1 The do_ Methods

Writing a servlet is easy enough. First, you need to create a subclass of
HTTPServlet: :AbstractServlet. Then, depending on whether you want to
service GET or POST or OPTIONS or HEAD request, you add a do_GET or
do_POST or do_0PTIONS or do_HEAD method respectively. If you want to sup-
port some of the less-frequently-encountered request, like PUT, you just need
to create a corresponding do_ method, e.g.: do_PUT.

AbstractServlet implements a do_HEAD and do_OPTIONS for you. do_HEAD
simply calls do_GET (which you need to provide) and sends back everything
except the body. do_OPTIONS simply return a list of do_ methods available.

“What should a do_ method do?”, you asked. That is up to you. WEBTrick
will call your do_ method with two arguments: the request and the response
objects. Normally, you’d want to, perhaps, query the request object and set the
response object correspondingly.

class GreetingServlet < HTTPServlet::AbstractServlet
def do_GET(req, resp)
if req.query[’name’]
resp.body = "#{Qoptions[0]} #{req.query[’name’]}. #{Qoptions[1]}"
raise HTTPStatus::0K
else
raise HTTPStatus::PreconditionFailed.new("missing attribute: ’name’")
end
end
alias do_POST, do_GET # let’s accept POST request too.

end

start_webrick {|server| server.mount(’/greet’, GreetingServlet, ’Hi’, ’Are you having a nice
Output:

dede:"$ w3m -dump ’http://localhost:8080/greet’
Precondition Failed

WEBrick/1.3.1 (Ruby/1.8.1/2004-02-03) at localhost:8080
dede:”$ w3m -dump ’http://localhost:8080/greet?name=Gadis+Manis’
Hi Gadis Manis. Are you having a nice day?

4.2 Responding

There are two ways to set the response status. The first, as shown above, is
to raise a HTTPStatus exception. I recommend this method because, in case
of error status, it returns a html page filled with the backtrace. If you need to
provide a custom error page,

1. Set the response status and body manually, OR

2. Extend the HTTPResponse object with the create_error_page method
which will be called upon error.

I favour the first approach since you cannot access the exception that was
thrown from within a create_error_page method.

class GreetingWithCustomisedErrorPageServlet < HTTPServlet::AbstractServlet
def do_GET(req, resp)
if req.query[’name’]
resp.body = "#{Qoptions[0]} #{req.query[’name’]}. #{Qoptions[1]}"
raise HTTPStatus::0K

else
resp.status = 412
resp.body = "Error within GreetingWithCustomisedErrorPageServlet"
resp[’content-type’] = ’text/plain’
end
end

end

class GreetingWithExtendedResponseObjectServlet < HTTPServlet::AbstractServlet
def do_GET(req, resp)

Extend the resp object
class << resp
def create_error_page
self [’content-type’] = ’text/plain’ # Default to ’text/html’
self.body = "Error within GreetingWithExtendedResponseObjectServlet"
Response status is determined from the HTTPStatus exception produced
end
end

raise HTTPStatus::PreconditionFailed unless req.query[’name’]
resp.body = "#{Q@options[0]} #{req.query[’name’]}. #{Qoptions[1]2}"
raise HTTPStatus::0K
end
end

start_webrick {|server|

server.mount (’/greetl’, GreetingWithCustomisedErrorPageServlet, ’Hi’, ’Are you having a n:

server.mount (’/greet2’, GreetingWithExtendedResponseObjectServlet, ’Hi’, ’Are you having :
X

Output:

dede:”$ w3m -dump http://localhost:8080/greetl

Error within GreetingWithCustomisedErrorPageServlet
dede:”$ w3m —dump http://localhost:8080/greet?2

Error within GreetingWithExtendedResponseObjectServlet

So, what HTTPStatus exceptions are available? Many; you can take a look
at httpstatus.rb, and do the following substitution on each value in the
StatusMessage table:

e Remove all ’-’ characters

e Remove all spaces

Example:

irb(main) :001:0> require ’webrick’; include WEBrick::HTTPStatus
=> Object

irb(main) :002:0> OK

=> WEBrick::HTTPStatus::0K

irb(main) :003:0> RequestURIToolLarge

=> WEBrick: :HTTPStatus: :RequestURITooLarge

The body of a response does not necessarily have to be a String. You can pass
an I0 object too. This should be handy if the response is long, e.g.: returning
the content of a file 16MB large.

10

4.3 Controlling Servlet Instantiations

Sometimes, you do not want WEBTrick to automatically create a new instance
of your servlet class. For example, if the initialisation part of your servlet is
expensive, you may want to reuse the same instance or at least manage a pool
of instances.

WEBErick calls your the class method get_instance with the parameters
config and —options—. This method should return the instance that WEBrick
should use to service the request. I recommend placing a mutex around critical
area since now the same instance may be accessed from more than one threads
simultaneously.

require ’thread’
class CounterServlet < HTTPServlet::AbstractServlet

@@instance = nil
Q@@instance_creation_mutex = Mutex.new
def self.get_instance(config, *options)
@Q@instance_creation_mutex.synchronize {
@Qinstance = Q@Q@instance || self.new(config, *options)
}

end

attr_reader :count

attr :count_mutex

def initialize(config, starting_count)
super
Q@count = starting_count
Qcount_mutex = Mutex.new

end

def do_GET(req, resp)
resp[’content-type’] = ’text/plain’
@count_mutex.synchronize {
resp.body = Qcount
Q@count += 1
}
end
end

start_webrick {l|server|
server.mount (’/count_from_0’, CounterServlet, 0)
server.mount (’/count_from_0_too’, CounterServlet, 100) # 100 has no effect

}

Output:

11

dede:”$ w3m —dump http://localhost:8080/count_from_0
dede:"$ w3m -dump http://localhost:8080/count_from_0
dede:”$ w3m —dump http://localhost:8080/count_from_0
dede:”$ w3m —dump http://localhost:8080/count_from_0
dede:"$ w3m -dump http://localhost:8080/count_from_0_too

dede:”$ w3m —dump http://localhost:8080/count_from_0_too

4.4 Cookies

Eric Hodel has graciously allowed me to reproduce his article on WEBrick’s
cookies here for the benefit of hard-copy readers. The WEBrick::Cookies struc-
ture is also copied in the reference section.

4.4.1 Eric Hodel’s ”WEBrick and Cookies”

Source: WEBrick and Cookies

WEBrick exposes cookies in a simple, easy to use Cookie class that ex-
poses all the properties of RFC 2109 cookies. Both the HTTPRequest and
HTTPResponse handily allow you to read and set cookies on requests.

(Cookies are delicious delicacies.)

WEBRICK:: COOKIE

WEBrick: :Cookie is a wrapper around a cookie that exposes all the proper-
ties of a cookie. To construct a WEBrick cookie, simply call WEBrick: : Cookie.new
and provide the name and value for the cookie. After instantiating a cookie you
can access cookie’s properties with the following methods (descriptions from
RFC 2109 and the Netscape Cookie specifications):

name The name of the cookie. The name of the cookie may only be read, not
set

value The value of the cookie. value should be in a printable ASCII encoding.

version Identifies which cookie specification this cookie conforms to. 0, the
default for Netscape Cookies, and 1 for RFC 2109 cookies.

domain The domain for which the cookie is valid. An explicitly specified do-
main must always start with a dot.

expires A Time or String representing when the cookie should expire. Expires
must to be in the following format: Wdy, DD-Mon-YYYY HH:MM:SS GMT

max_age The lifetime of the cookie in seconds from the time the cookie is sent.
A zero value means the cookie should be discarded immediately.

12

http://segment7.net/projects/ruby/WEBrick/cookies.html
http://segment7.net/projects/ruby/WEBrick/cookies.html
http://segment7.net/projects/ruby/WEBrick/cookies.html
ftp://ftp.rfc-editor.org/in-notes/rfc2109.txt
http://lxr.mozilla.org/mozilla/source/browser/locales/en-US/chrome/browser/pref/pref-privacy.dtd#25

comment Allows an origin server to document its intended use of a cookie. The
user can inspect the information to decide whether to initiate or continue
a session with this cookie.

path The subset of URLs to which the cookie applies.

secure When set to true, the cookie should only be sent back over a secure
connection.

RETRIEVING AND SETTING COOKIES

Cookies are read in by WEBrick: :HTTPRequest automatically, and are avail-
able as an Array from HTTPRequest#cookies. When creating a WEBrick: :HTTPResponse,
cookies may be appended to the HTTPResponse#cookies Array.

Cookies will not be automatically copied from the HTTPRequest to the
HTTPResponse. You must do this by hand.

5 Logging

WEBTrick uses a logger to record its activity. This server-level logger is also
made available to all servlets. Please use it to log the servlet activity instead of
spewing logs after logs directly to, say, $stderr.

The logger has five different logging levels and a default level. Each level has
its own priority and logs having a level that is of lower priority than the default
level are not recorded.

The levels are (arranged from the highest to lowest priority):

e fatal
e error
e warn
e info

e debug

You may log a message by calling the logger like so: @logger.error("1+1 is 3?7 You must have been s}
You may also want to send the << message which will log the message under
the info level: @logger << "This is an info-level message".

The default logger has a default level of ’info’ and outputs to $stderr, but
you can change it easily enough as shown in the following example.

class HelloWorldServlet < HTTPServlet::AbstractServlet
def do_GET(req, resp)
Q@logger.debug("About to return ’Hello World’")
resp.body = ’Hello World’
end
end

13

a logger that outputs to /dev/null and has a default level of ’INFO’
null_logger = Log.new(’/dev/null’)

a logger that outputs to $stderr and has a default level of ’DEBUG’
fatal_stderr_logger = Log.new($stderr, Log::DEBUG)

start_webrick(:Logger => fatal_stderr_logger) {|server
server.mount (’ /helloworld’, HelloWorldServlet)
}

5.1 Access Log

The access log is special: you are more likely to access it more frequently than
the logs of other activities. As such, you may not want to do anything special
to extract it from the general log. Thus, WEBrick does not mix the access log
with other logs.

Well, actually the default access log and the server-level log output to the
same sink: $stderr. Let’s change it on the next example.

server_logger = Log.new(’/var/log/webrick/server.log’)

The :AccesslLog configuration takes an array.

Each element of the array should be a two-element array where

the first element is the stream (or anything responding to <<) and
the second element is the access log format.

Please see webrick/accesslog.rb for available formats.

access_log_stream = File.open(’/var/log/webrick/access.log’, ’w’)
access_log = [[access_log_stream, AccessLog::COMBINED_LOG_FORMAT]]

start_webrick(:Logger => server_logger, :AccessLog => access_log)

6 Hooks

WEBFrick has many hooks you can tap into. Following is a flow-chart (somewhat)
of the order of hook invocation.

Server:

:ServerType.start (before yield)
:StartCallback

:AcceptCallback

:RequestHandler

servlet invoked at this point

14

:StopCallback
:ServerType.start (after yield)

FileHandler Servlet:

:DirectoryCallback or :FileCallback
:HandlerCallback
handler is invoked at this point

7 HTTP Authentication

RFC 2617 specifies two mechanism for HT'TP authentication: basic and digest.
WEBFrick supports both authentication mechanisms. WEBTrick verifies authen-
tication information against user-specified Apache-compatible user database.

Sometimes, you find that setting up a user database file troublesome. With
basic authentication, you can pass a block of code to WEBrick that returns
true if the authentication token is valid or false otherwise. This is a shortcut to
having to create a user database file.

realm = "Gnome’s realm"
start_webrick {l|server|
server .mount_proc(’/convenient_basic_auth’) {l|req, respl
HTTPAuth.basic_auth(req, resp, realm) {|user, pass|
this block returns true if authentication token is valid
user == ’gnome’ && pass == ’supersecretpassword’
3
resp.body = "You are authenticated to see the super secret data\n"
}
X

dede:"$ w3m -dump http://localhost:8080/convenient_basic_auth
Username for Gnome’s realm: gnome

Password: supersecretpassword

You are authenticated to see the super secret data

7.1 Basic Authentication

Basic authentication is done by HTTPAuth: :BasicAuth. If using a user data-
base file, the file must be similar to what htpasswd (from Apache HTTP Server
package) generates. The supplied HTTPAuth: :Htpasswd parser can only under-
stand passwords generated using the standard crypt () function. This means,
you have to invoke htpasswd with the -d argument. On all platforms except
Windows and TPF, -d is the default argument.

realm = "Gnome’s realm"

15

http://www.ietf.org/rfc/rfc2617.txt

start_webrick {l|server|
htpasswd = HTTPAuth: :Htpasswd.new(’/tmp/gnome.htpasswd’)
authenticator = HTTPAuth::BasicAuth.new(:UserDB => htpasswd, :Realm => realm)
server .mount_proc(’/htpasswd_auth’) {l|req, respl
authenticator.authenticate(req, resp)
resp.body = "You are authenticated to see the super secret data\n"

-c create password file
-d use the default crypt() function
-b accept password specified on the command line

dede:"$ htpasswd -cdb /tmp/gnome.htpasswd gnome supersecretpassword
Adding password for user gnome

dede:"$ cat /tmp/gnome.htpasswd
gnome :02.19saB33Yk.

dede:”$ w3m —dump http://localhost:8080/htpasswd_auth
Username for Gnome’s realm: gnome

Password: notsosecretpassword

Wrong username or password

Username for Gnome’s realm: gnome

Password: supersecretpassword

You are authenticated to see the super secret data

7.2 Digest Authentication

WEBErick requires a user database file for digest authentication. The file must
be in a format similar to what htdigest produces. The parser for the file is
HTTPAuth: :Htdigest, and the authenticator is HTTPAuth: :DigestAuth.

realm = "Gnome’s realm"
start_webrick {l|server|
htdigest = HTTPAuth::Htdigest.new(’/tmp/gnome.htdigest’)
authenticator = HTTPAuth::DigestAuth.new(:UserDB => htdigest, :Realm => realm)
server .mount_proc(’/htdigest_auth’) {l|req, respl
authenticator.authenticate(req, resp)
resp.body = "You are authenticated to see the super secret data\n"
b
X

dede:"$ htdigest -c /tmp/gnome.htdigest "Gnome’s realm" gnome
Adding password for gnome in realm Gnome’s realm.

New password: supersecretpassword

Re-type new password: supersecretpassword

16

dede:”$ cat /tmp/gnome.htdigest
gnome :Gnome’s realm:97b64451958049b15eab578ecfb5eadb2

dede:"$ w3m —dump http://localhost:8080/htdigest_auth
Username for Gnome’s realm: gnome

Password: supersecretpassword

You are authenticated to see the super secret data

8 Becoming a Proxy Server !NOT YET
9 Doing Virtual Host INOT YET

Not ready yet. In the meantime, please see: the following post about virtual
hosting with WEBrick.

10 Configuration Reference

10.1 Server Configuration

:ServerName Default: Utils: :getservername, which usually outputs whatever
value in /etc/hostname.

:Bind Address Default: nil. "0.0.0.0" and "::" have the same effect as
nil, which is to listen to all available network interfaces. If you want
WEBTrick to listen to a particular network interface, give this the value of
that network interface.

:Port Default: 80 (for HTTPServer). The listening port number. It can also
take a string (typically a service name), which will be the resolved through
/etc/services (or other OS-dependent mechanism) to port number.

:MaxClients Default: 100. Maximum number of concurrent connections.
WEBrick uses a new thread for each new connection. Thus, data in
thread-local storage will be lost when the connection is closed.

:ServerType Default: SimpleServer. SimpleServer simply starts the server.
This is provided mainly so that you can override how WEBTrick starts the
server, e.g.: provide starting and stopping hooks. Please see the Hooks
section.

:Logger Default: Log.new. A simple logging library, implemented in webrick/log.rb.
You may use another Log library, such as log4r.

:ServerSoftware Default: "WEBrick/#{WEBrick: :VERSION} (Ruby/#{RUBY_VERSION}/#{RUBY_RELEASE_DA
For posterity purpose.

17

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/81383
http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/81383

:TempDir Default: ENV[’TMPDIR’]—ENV[TMP’|—ENV[TEMP’|—/tmp—.
Among the standard handlers, only HTTPServlet: :CGIHandler uses this
to capture the invoked cgi’s stdout and stderr streams.

:DoNotListen Default: false which will cause WEBrick to listen on the
:BindAddress at port :Port.

:StartCallback Default: nil. An alternative way to hook into the startup
process. If not nil, the value must respond to call message. Please see
the Hooks section.

:StopCallback Default: nil. Similar to :StartCallback, except called dur-
ing the shutdown process.

:AcceptCallback Default: nil. Similar to other callbacks, but called when a
new connection has been accepted. The socket of the accepted connection
is passed as the argument.

:RequestTimeout Default: 30 (seconds). Specifies how long to wait for each
read operation on the socket. Some reads are line-based, for example,
while reading the request-line, the headers, and chunked body; while some
are stream-based

:HTTPVersion Default: HTTPVersion.new("1.1"). If WEBrick receives a
non-HTTP 1.1 request, it will responding appropriately by using whatever
HTTP protocol the request specify.

:AccessLog Default: [[$stderr, AccessLog::COMMON_LOG_FORMAT], [$stderr, AccessLog
Please see the Logging section for further description.

:MimeTypes Default: HTTPUtils: :DefaultMimeTypes. Please see Overrid-
ing Default MIME Type section

:DirectoryIndex Default: ["index.html","index.htm","index.cgi","index.rhtml"].
FileHandlers look for these files when it receives a request for displaying
a directory. If it finds any of these files, the file will be displayed instead
of a file listing of the directory.

:DocumentRoot Default: nil. If it is not nil, WEBrick will setup a FileHandler
for request-URI ’/” to the specified filesystem path. Please see FileHandler
section.

:DocumentRootOptions Default: :Fancylndexing =; true . Please see File-
Handler Config Reference for other options.

: :REFEREF

:RequestHandler Default: nil. If not nil, it will be invoked like so: handler.call(request, response)

before WEBTrick services the request. Please see the Hooks section.
:ProxyAuthProc !NOT YET Default: nil.
:ProxyContentHandler !NOT YET Default: nil.

18

:ProxyVia INOT YET Default: true.
:ProxyTimeout !NOT YET Default: true.
:ProxyURI !NOT YET Default: nil.
:CGIInterpreter !NOT YET Default: nil.
:CGIPathEnv !NOT YET Default: nil. INOT YET.

:Escape8bitURI !INOT YET Default: false. INOT YET. need more de-
tailed explanation. If true, then escape 8-bit characters in request-URI
contains 8-bit before parsing it.

10.2 FileHandler Configuration

:NondisclosureName Default: ".ht*". In a directory listing, any any file
that matches the value (as per shell-globbing, not regular expression) is
not displayed. If the request-URI refers to a file that matches the value,
FileHandler will return a 403 (Forbidden) status.

:FancyIndexing Default: false. If this is true and the request-URI refers to
a directory, and not a file, then FileHandler servlet will list the contents
of that directory. Otherwise, it will return a 403 (Forbidden) status.

:HandlerTable Default: {}. This is a mapping of filename suffix =; handler.
If this is left blank, then all request for file is passed on to an instance
of HTTPServlet: :DefaultFileHandler. This handler understands the
HTTP’s range directive (partial file transfer).

:HandlerCallback Default: nil. A callback which is invoked before the hand-
ler for the request.

:DirectoryCallback Default: nil. A callback which is invoked before the
handler for the request (and before HandlerCallback) if the request-URI
refers to a directory.

:FileCallback Default: nil. Similar to DirectoryCallback except if the
request-URI refers to a directory.

:UserDir Default: "public_html". If the FileHandler servlet is mounted on
’ /7, and the request-URI starts with ’/“username’, then it is mapped to
"#{username’s home dirl}/#{:UserDir valuel}".

10.3 BasicAuth Configuration

:UserDB An instance of HTTPAuth: :Htpasswd initialised with the filename of
the htpasswd file.

:Realm You have to supply this, but it is not used.

19

10.4 DigestAuth Configuration

:UserDB An instance of HTTPAuth: : Htpasswd initialised with the filename of
the htpasswd file.

:Realm You have to supply this, and it is used.

11 Class&Module Reference
11.1 HTTPRequest

Following is a list of methods of a HTTPRequest object. The list also contains
example values corresponding to this HTTP request:

GET /foo/bar?keyl=valuel&KEY2=value2 HTTP/1.1

Host: localhost:8080

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9
Accept: text/plain;q=0.8,image/png,image/jpeg,image/gif;q=0.2,*/*;9=0.1
Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;q9=0.7,%;9=0.7

Keep-Alive: 300

Connection: keep-alive

Request line
request_line "GET /foo/bar?keyl=valuel&KEY2=value2 HTTP/1.1\r\n"
request_method "GET"
unparsed_uri /foo/bar?keyl=valuel&KEY2=value2

http_version HTTPVersion.new("1.1"). If the request line is missing the
HTTP part, it is considered to be HTTP 0.9.

Request-URI
request_uri ::URI::parse("http://localhost:8080/foo/bar?keyl=valuel&KEY2=value2")
host "localhost"
port "port"
path "/foo/bar"
query_string keyl=valuel&KEY2=value2
script_name "/foo"

path_info "/bar"

Header and Entity Body

20

raw_header ["Host: localhost:8080\r\n",
"Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9\r\n",
"Accept: text/plain;q=0.8,image/png,image/jpeg,image/gif;q=0.2,*/*;q=0.1\r\n",
"Accept-Encoding: gzip,deflate\r\n",
"Accept-Charset: IS0-8859-1,utf-8;9=0.7,*;9=0.7\r\n",
"Keep-Alive: 300\r\n",
"Connection: keep-alive\r\n"]

header a hash of key =; [value] of the header. The header name is downcased.
If there are multiple header names, their values are appended to the array
of values.

[| Theresult of request. [?ACCEPT’] is request.header [?ACCEPT’ .downcase] . join(", ")
each Invoke the passed block for every header key-value pair, e.g.: req.each {lkey, value| puts "#{key} =

keep_alive true. Set true if the header ’connection’ is not set to 'close’ and
the request is in HTTP 1.1.

keep_alive? true. Alias of keep_alive.

cookies An array containing instances of Cookie, each representing a cookie
that the client sent. These cookies are not automatically copied to the
HTTPResponse object.

query {"keyl"=>"valuel", "KEY2"=>"value2"}. Thisisatable of key => value.
value is of type FormData which is just a subclass of String. This in-
formation matters only if you have duplicate keys in the query_string.

body a String containing the body of the request. It is nil unless the request
is POST or PUT.

Miscellaneous

user nil. This is set if the client is using HTTP authentication.

addr ["AF_INET", 8080, "dede", "127.0.0.1"]. The local address of the
socket on which this request is received.

peeraddr ["AF_INET", 37934, "dede", "127.0.0.1"]. The address of the
client.

attributes {}. I am not sure what this is for.
request_time a Time object, set to when the request is made.

meta_vars a hash filled containing the CGI meta-variables. The |CGI specific-
ation has a list of these meta-variables.

21

http://cgi-spec.golux.com/
http://cgi-spec.golux.com/

11.2 HTTPUtils::FormData

The FormData object is a subclass of String. It is used to represent query
values. In a query, the same key may be assigned multiple values. Each value
is assigned to an instance of FormData. This instance stores a reference to the
next instance of FormData that stores the next value, and so on.

each_data Pass a block to it and for each value, it will call the block.

list Puts the values into an array.

11.3 HTTPResponse Object

Many of the methods in HTTPResponse are called by WEBrick after your ser-
vlet has serviced the request. Instead of listing all public methods as in the
HTTPRequest listing above, the following only lists methods that is meaningful
in servlet context:

status= You can set the response status using this, e.g.: resp.status = 202
[[= You can set a custom header using this, e.g.: resp[’content-type’] = *text/html’

body= You can set the body of the response using this. It can also be an 10
object in which case, the content is transmitted in blocks.

set_redirect Sends a redirect response to the given URI, e.g.: resp.set_redirect (HTTPStatus: :MovedPerma

cookies An array containing instances of Cookie that are going to be sent back
to the client. Initially the array is empty as the cookies received from the
clients are not automatically copied here.

11.4 Cookie

name The name of the cookie. The name of the cookie may only be read, not
set

value The value of the cookie. value should be in a printable ASCII encoding.

version Identifies which cookie specification this cookie conforms to. 0, the
default for Netscape Cookies, and 1 for RFC 2109 cookies.

domain The domain for which the cookie is valid. An explicitly specified do-
main must always start with a dot.

expires A Time or String representing when the cookie should expire. Expires
must to be in the following format: Wdy, DD-Mon-YYYY HH:MM:SS GMT

max_age The lifetime of the cookie in seconds from the time the cookie is sent.
A zero value means the cookie should be discarded immediately.

22

comment Allows an origin server to document its intended use of a cookie. The
user can inspect the information to decide whether to initiate or continue
a session with this cookie.

path The subset of URLs to which the cookie applies.

secure When set to true, the cookie should only be sent back over a secure
connection.

23

11.5 HTTPStatus Module

’ Parent Class \ Response Code \

Class Name

Info 100 Continue
101 SwitchingProtocols
Success 200 OK
201 Created
202 Accepted
203 NonAuthoritativeInformation
204 NoContent
205 ResetContent
206 PartialContent
Redirect 300 MultipleChoices
301 MovedPermanently
302 Found
303 SeeOther
304 NotModified
305 UseProxy
307 TemporaryRedirect
ClientError 400 BadRequest
401 Unauthorized
402 PaymentRequired
403 Forbidden
404 NotFound
405 MethodNotAllowed
406 NotAcceptable
407 ProxyAuthenticationRequired
408 RequestTimeout
409 Conflict
410 Gone
411 LengthRequired
412 PreconditionFailed
413 RequestEntityTooLarge
414 RequestURITooLarge
415 UnsupportedMediaType
416 RequestRangeNotSatisfiable
417 ExpectationFailed
ServerError 500 InternalServerError
501 NotImplemented
502 BadGateway
503 ServiceUnavailable
504 GatewayTimeout
505 HTTPVersionNotSupported

24

12 Glossary

Callback An object that respond to the call message. Usually this is an
instance of Proc or Method.

Path-Info The trailing path after the handler’s path. If a handler is mounted at
'/foo’, and the request-URI is ’/foo/bar/is/boring’, then path-info would
be ’/bar/is/boring’

Request-URI the path specified in a HT'TP URI. For example, the request-
URI of "http://hoohoo.ncsa.uiuc.edu/cgi/env.html’ is ’/cgi/env.html’

13 Author’s Note

Author’s Note

The first WEBTrick-based application I built was a port of a Java REST-ful
server. I attended a seattle.rb meeting where Eric Hodel was demonstrating
WEBrick. At that time, I was a bit overwhelmed maintaining a Java-Servlet-
based REST-ful server due to the extensive class hierarchy (there were 560-ish
classes). Many of them are used to get around Java restrictiveness, for example,
for creating first-class function object (Proc or block in Ruby).

The performance I am getting is also acceptable, averaging 50 requests/second
on a 600MHz P-I1T machine 256 MB, a bit faster than Tomcat’s 40 requests/second
(T suspect because of lighter memory requirement which translate to less fre-
quent swapping on that machine). The memory usage is also acceptable, hov-
ering around 27 MB for about 100 concurrent client compared to 127MB in
Tomcat. Yes, I probably should not have been using Tomcat as comparison as
it is well-known to be a behemoth, but that is the official Java Servlet container
and also the most widely-used too.

Obviously, this statistics are very activity-dependent. A simple hello world
server would be chastised for having this statistics.

In any case, I hope you will enjoy using WEBTrick; I certainly do.

14 License

Copyright (c) 2004, Yohanes Santoso.

Permission is granted to copy, distribute and/or modify this docu-
ment under the terms of the GNU Free Documentation License, Ver-
sion 1.2 or any later version published by the Free Software Found-
ation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section
entitled ”GNU Free Documentation License”.

25

15 GNU Free Documentation License

Version 1.2, November 2002
Copyright (©2000,2001,2002 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other func-
tional and useful document ”free” in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of ” copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the conditions stated
herein. The ”Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as ”you”. You accept the
license if you copy, modify or distribute the work in a way requiring permission
under copyright law.

A ”Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary

26

Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the Doc-
ument is released under this License. A Front-Cover Text may be at most 5
words, and a Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for draw-
ings) some widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discour-
age subsequent modification by readers is not Transparent. An image format is
not Transparent if used for any substantial amount of text. A copy that is not
”Transparent” is called ” Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML, Post-
Script or PDF designed for human modification. Examples of transparent im-
age formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, ”Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text
that translates XYZ in another language. (Here XYZ stands for a specific sec-
tion name mentioned below, such as ” Acknowledgements”, ”Dedications”,
”Endorsements”, or ”History”.) To ”Preserve the Title” of such a sec-
tion when you modify the Document means that it remains a section ”Entitled
XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which

27

states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices, and
the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy
of the Document, free of added material. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

28

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

A.

Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

. List on the Title Page, as authors, one or more persons or entities respons-

ible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

. Include an unaltered copy of this License.

Preserve the section Entitled ”History”, Preserve its Title, and add to it
an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
”History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the ”History” section. You may omit a network

29

location for a work that was published at least four years before the Doc-
ument itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled ” Acknowledgements” or ”Dedications”, Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled ”Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties—for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the

30

original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty
Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History” in
the various original documents, forming one section Entitled ”History”; likewise
combine any sections Entitled ” Acknowledgements”, and any sections Entitled
"Dedications”. You must delete all sections Entitled ” Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in
the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distribution
medium, is called an ”aggregate” if the copyright resulting from the compilation
is not used to limit the legal rights of the compilation’s users beyond what the
individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the
Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket
the whole aggregate.

8. TRANSLATION

31

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant Sec-
tions with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation
of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ” Acknowledgements”, ”Dedica-
tions”, or ”History”, the requirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License ”or
any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the

License in the document and put the following copyright and license notices just
after the title page:

Copyright ©YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU

32

Free Documentation License, Version 1.2 or any later version pub-
lished by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the li-
cense is included in the section entitled ” GNU Free Documentation
License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the ”with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being
LIST.

If you have Invariant Sections without Cover Texts, or some other combin-
ation of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.

33

