Support for the Ruby 2.1 series ended on March 31 2017. See here for details.
Object
date and datetime class - Tadayoshi Funaba 1998-2011
'date' provides two classes Date and DateTime.
Some terms and definitions are based on ISO 8601 and JIS X 0301.
The calendar date is a particular day of a calendar year, identified by its ordinal number within a calendar month within that year.
In those classes, this is so-called “civil”.
The ordinal date is a particular day of a calendar year identified by its ordinal number within the year.
In those classes, this is so-called “ordinal”.
The week date is a date identified by calendar week and day numbers.
The calendar week is a seven day period within a calendar year, starting on a Monday and identified by its ordinal number within the year; the first calendar week of the year is the one that includes the first Thursday of that year. In the Gregorian calendar, this is equivalent to the week which includes January 4.
In those classes, this so-called “commercial”.
The Julian day number is in elapsed days since noon (Greenwich mean time) on January 1, 4713 BCE (in the Julian calendar).
In this document, the astronomical Julian day number is same as the original Julian day number. And the chronological Julian day number is a variation of the Julian day number. Its days begin at midnight on local time.
In this document, when the term “Julian day number” simply appears, it just refers to “chronological Julian day number”, not the original.
In those classes, those are so-called “ajd” and “jd”.
The modified Julian day number is in elapsed days since midnight (Coordinated universal time) on November 17, 1858 CE (in the Gregorian calendar).
In this document, the astronomical modified Julian day number is same as the original modified Julian day number. And the chronological modified Julian day number is a variation of the modified Julian day number. Its days begin at midnight on local time.
In this document, when the term “modified Julian day number” simply appears, it just refers to “chronological modified Julian day number”, not the original.
In those classes, this is so-called “mjd”.
A subclass of Object includes Comparable module, easily handles date.
Date object is created with ::new, ::jd, ::ordinal, ::commercial, ::parse, ::strptime, ::today, Time#to_date or etc.
require 'date' Date.new(2001,2,3) #=> #<Date: 2001-02-03 ...> Date.jd(2451944) #=> #<Date: 2001-02-03 ...> Date.ordinal(2001,34) #=> #<Date: 2001-02-03 ...> Date.commercial(2001,5,6) #=> #<Date: 2001-02-03 ...> Date.parse('2001-02-03') #=> #<Date: 2001-02-03 ...> Date.strptime('03-02-2001', '%d-%m-%Y') #=> #<Date: 2001-02-03 ...> Time.new(2001,2,3).to_date #=> #<Date: 2001-02-03 ...>
All date objects are immutable; hence cannot modify themselves.
The concept of this date object can be represented as a tuple of the day count, the offset and the day of calendar reform.
The day count denotes the absolute position of a temporal dimension. The offset is relative adjustment, which determines decoded local time with the day count. The day of calendar reform denotes the start day of the new style. The old style of the West is the Julian calendar which was adopted by Caersar. The new style is the Gregorian calendar, which is the current civil calendar of many countries.
The day count is virtually the astronomical Julian day number. The offset in this class is usually zero, and cannot be specified directly.
An optional argument the day of calendar reform (start) as a Julian day number, which should be 2298874 to 2426355 or -/+oo. The default value is Date::ITALY (2299161=1582-10-15). See also sample/cal.rb.
$ ruby sample/cal.rb -c it 10 1582 October 1582 S M Tu W Th F S 1 2 3 4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 $ ruby sample/cal.rb -c gb 9 1752 September 1752 S M Tu W Th F S 1 2 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Date object has various methods. See each reference.
d = Date.parse('3rd Feb 2001') #=> #<Date: 2001-02-03 ...> d.year #=> 2001 d.mon #=> 2 d.mday #=> 3 d.wday #=> 6 d += 1 #=> #<Date: 2001-02-04 ...> d.strftime('%a %d %b %Y') #=> "Sun 04 Feb 2001"
A subclass of Date easily handles date, hour, minute, second and offset.
DateTime does not consider any leapseconds, does not track any summer time rules.
DateTime object is created with DateTime.new, DateTime.jd, DateTime.ordinal, DateTime.commercial, DateTime.parse, DateTime.strptime, DateTime.now, Time#to_datetime or etc.
require 'date' DateTime.new(2001,2,3,4,5,6) #=> #<DateTime: 2001-02-03T04:05:06+00:00 ...>
The last element of day, hour, minute or senond can be fractional number. The fractional number's precision is assumed at most nanosecond.
DateTime.new(2001,2,3.5) #=> #<DateTime: 2001-02-03T12:00:00+00:00 ...>
An optional argument the offset indicates the difference between the local time and UTC. For example, Rational(3,24) represents ahead of 3 hours of UTC, Rational(-5,24) represents behind of 5 hours of UTC. The offset should be -1 to +1, and its precision is assumed at most second. The default value is zero (equals to UTC).
DateTime.new(2001,2,3,4,5,6,Rational(3,24)) #=> #<DateTime: 2001-02-03T04:05:06+03:00 ...>
also accepts string form.
DateTime.new(2001,2,3,4,5,6,'+03:00') #=> #<DateTime: 2001-02-03T04:05:06+03:00 ...>
An optional argument the day of calendar reform (start) denotes a Julian day number, which should be 2298874 to 2426355 or -/+oo. The default value is Date::ITALY (2299161=1582-10-15).
DateTime object has various methods. See each reference.
d = DateTime.parse('3rd Feb 2001 04:05:06+03:30') #=> #<DateTime: 2001-02-03T04:05:06+03:30 ...> d.hour #=> 4 d.min #=> 5 d.sec #=> 6 d.offset #=> (7/48) d.zone #=> "+03:30" d += Rational('1.5') #=> #<DateTime: 2001-02-04%16:05:06+03:30 ...> d = d.new_offset('+09:00') #=> #<DateTime: 2001-02-04%21:35:06+09:00 ...> d.strftime('%I:%M:%S %p') #=> "09:35:06 PM" d > DateTime.new(1999) #=> true
An array of strings of abbreviated day names in English. The first is “Sun”.
An array of strings of abbreviated month names in English. The first element is nil.
An array of strings of the full names of days of the week in English. The first is “Sunday”.
The Julian day number of the day of calendar reform for England and her colonies.
The Julian day number of the day of calendar reform for the proleptic Gregorian calendar
The Julian day number of the day of calendar reform for Italy and some catholic countries.
The Julian day number of the day of calendar reform for the proleptic Julian calendar
An array of strings of full month names in English. The first element is nil.
Returns a hash of parsed elements.
static VALUE date_s__httpdate(VALUE klass, VALUE str) { return date__httpdate(str); }
Returns a hash of parsed elements.
static VALUE date_s__iso8601(VALUE klass, VALUE str) { return date__iso8601(str); }
Returns a hash of parsed elements.
static VALUE date_s__jisx0301(VALUE klass, VALUE str) { return date__jisx0301(str); }
Parses the given representation of date and time, and returns a hash of parsed elements. This method does not function as a validator.
If the optional second argument is true and the detected year is in the range “00” to “99”, considers the year a 2-digit form and makes it full.
Date._parse('2001-02-03') #=> {:year=>2001, :mon=>2, :mday=>3}
static VALUE date_s__parse(int argc, VALUE *argv, VALUE klass) { return date_s__parse_internal(argc, argv, klass); }
Returns a hash of parsed elements.
static VALUE date_s__rfc2822(VALUE klass, VALUE str) { return date__rfc2822(str); }
Returns a hash of parsed elements.
static VALUE date_s__rfc3339(VALUE klass, VALUE str) { return date__rfc3339(str); }
Returns a hash of parsed elements.
static VALUE date_s__rfc2822(VALUE klass, VALUE str) { return date__rfc2822(str); }
Parses the given representation of date and time with the given template, and returns a hash of parsed elements. _strptime does not support specification of flags and width unlike strftime.
Date._strptime('2001-02-03', '%Y-%m-%d') #=> {:year=>2001, :mon=>2, :mday=>3} See also strptime(3) and strftime.
static VALUE date_s__strptime(int argc, VALUE *argv, VALUE klass) { return date_s__strptime_internal(argc, argv, klass, "%F"); }
Returns a hash of parsed elements.
static VALUE date_s__xmlschema(VALUE klass, VALUE str) { return date__xmlschema(str); }
Creates a date object denoting the given calendar date.
In this class, BCE years are counted astronomically. Thus, the year before the year 1 is the year zero, and the year preceding the year zero is the year -1. The month and the day of month should be a negative or a positive number (as a relative month/day from the end of year/month when negative). They should not be zero.
The last argument should be a Julian day number which denotes the day of calendar reform. Date::ITALY (2299161=1582-10-15), Date::ENGLAND (2361222=1752-09-14), Date::GREGORIAN (the proleptic Gregorian calendar) and Date::JULIAN (the proleptic Julian calendar) can be specified as a day of calendar reform.
Date.new(2001) #=> #<Date: 2001-01-01 ...> Date.new(2001,2,3) #=> #<Date: 2001-02-03 ...> Date.new(2001,2,-1) #=> #<Date: 2001-02-28 ...>
See also jd.
static VALUE date_s_civil(int argc, VALUE *argv, VALUE klass) { VALUE vy, vm, vd, vsg, y, fr, fr2, ret; int m, d; double sg; rb_scan_args(argc, argv, "04", &vy, &vm, &vd, &vsg); y = INT2FIX(-4712); m = 1; d = 1; fr2 = INT2FIX(0); sg = DEFAULT_SG; switch (argc) { case 4: val2sg(vsg, sg); case 3: num2int_with_frac(d, positive_inf); case 2: m = NUM2INT(vm); case 1: y = vy; } if (guess_style(y, sg) < 0) { VALUE nth; int ry, rm, rd; if (!valid_gregorian_p(y, m, d, &nth, &ry, &rm, &rd)) rb_raise(rb_eArgError, "invalid date"); ret = d_simple_new_internal(klass, nth, 0, sg, ry, rm, rd, HAVE_CIVIL); } else { VALUE nth; int ry, rm, rd, rjd, ns; if (!valid_civil_p(y, m, d, sg, &nth, &ry, &rm, &rd, &rjd, &ns)) rb_raise(rb_eArgError, "invalid date"); ret = d_simple_new_internal(klass, nth, rjd, sg, ry, rm, rd, HAVE_JD | HAVE_CIVIL); } add_frac(); return ret; }
Creates a date object denoting the given week date.
The week and the day of week should be a negative or a positive number (as a relative week/day from the end of year/week when negative). They should not be zero.
Date.commercial(2001) #=> #<Date: 2001-01-01 ...> Date.commercial(2002) #=> #<Date: 2001-12-31 ...> Date.commercial(2001,5,6) #=> #<Date: 2001-02-03 ...>
See also jd and new.
static VALUE date_s_commercial(int argc, VALUE *argv, VALUE klass) { VALUE vy, vw, vd, vsg, y, fr, fr2, ret; int w, d; double sg; rb_scan_args(argc, argv, "04", &vy, &vw, &vd, &vsg); y = INT2FIX(-4712); w = 1; d = 1; fr2 = INT2FIX(0); sg = DEFAULT_SG; switch (argc) { case 4: val2sg(vsg, sg); case 3: num2int_with_frac(d, positive_inf); case 2: w = NUM2INT(vw); case 1: y = vy; } { VALUE nth; int ry, rw, rd, rjd, ns; if (!valid_commercial_p(y, w, d, sg, &nth, &ry, &rw, &rd, &rjd, &ns)) rb_raise(rb_eArgError, "invalid date"); ret = d_simple_new_internal(klass, nth, rjd, sg, 0, 0, 0, HAVE_JD); } add_frac(); return ret; }
Returns true if the given year is a leap year of the proleptic Gregorian calendar.
Date.gregorian_leap?(1900) #=> false Date.gregorian_leap?(2000) #=> true
static VALUE date_s_gregorian_leap_p(VALUE klass, VALUE y) { VALUE nth; int ry; decode_year(y, -1, &nth, &ry); return f_boolcast(c_gregorian_leap_p(ry)); }
Creates a new Date object by parsing from a string according to some RFC 2616 format.
Date.httpdate('Sat, 03 Feb 2001 00:00:00 GMT') #=> #<Date: 2001-02-03 ...>
static VALUE date_s_httpdate(int argc, VALUE *argv, VALUE klass) { VALUE str, sg; rb_scan_args(argc, argv, "02", &str, &sg); switch (argc) { case 0: str = rb_str_new2("Mon, 01 Jan -4712 00:00:00 GMT"); case 1: sg = INT2FIX(DEFAULT_SG); } { VALUE hash = date_s__httpdate(klass, str); return d_new_by_frags(klass, hash, sg); } }
Creates a new Date object by parsing from a string according to some typical ISO 8601 formats.
Date.iso8601('2001-02-03') #=> #<Date: 2001-02-03 ...> Date.iso8601('20010203') #=> #<Date: 2001-02-03 ...> Date.iso8601('2001-W05-6') #=> #<Date: 2001-02-03 ...>
static VALUE date_s_iso8601(int argc, VALUE *argv, VALUE klass) { VALUE str, sg; rb_scan_args(argc, argv, "02", &str, &sg); switch (argc) { case 0: str = rb_str_new2("-4712-01-01"); case 1: sg = INT2FIX(DEFAULT_SG); } { VALUE hash = date_s__iso8601(klass, str); return d_new_by_frags(klass, hash, sg); } }
Creates a date object denoting the given chronological Julian day number.
Date.jd(2451944) #=> #<Date: 2001-02-03 ...> Date.jd(2451945) #=> #<Date: 2001-02-04 ...> Date.jd(0) #=> #<Date: -4712-01-01 ...>
See also new.
static VALUE date_s_jd(int argc, VALUE *argv, VALUE klass) { VALUE vjd, vsg, jd, fr, fr2, ret; double sg; rb_scan_args(argc, argv, "02", &vjd, &vsg); jd = INT2FIX(0); fr2 = INT2FIX(0); sg = DEFAULT_SG; switch (argc) { case 2: val2sg(vsg, sg); case 1: num2num_with_frac(jd, positive_inf); } { VALUE nth; int rjd; decode_jd(jd, &nth, &rjd); ret = d_simple_new_internal(klass, nth, rjd, sg, 0, 0, 0, HAVE_JD); } add_frac(); return ret; }
Creates a new Date object by parsing from a string according to some typical JIS X 0301 formats.
Date.jisx0301('H13.02.03') #=> #<Date: 2001-02-03 ...>
static VALUE date_s_jisx0301(int argc, VALUE *argv, VALUE klass) { VALUE str, sg; rb_scan_args(argc, argv, "02", &str, &sg); switch (argc) { case 0: str = rb_str_new2("-4712-01-01"); case 1: sg = INT2FIX(DEFAULT_SG); } { VALUE hash = date_s__jisx0301(klass, str); return d_new_by_frags(klass, hash, sg); } }
Returns true if the given year is a leap year of the proleptic Julian calendar.
Date.julian_leap?(1900) #=> true Date.julian_leap?(1901) #=> false
static VALUE date_s_julian_leap_p(VALUE klass, VALUE y) { VALUE nth; int ry; decode_year(y, +1, &nth, &ry); return f_boolcast(c_julian_leap_p(ry)); }
Returns true if the given year is a leap year of the proleptic Gregorian calendar.
Date.gregorian_leap?(1900) #=> false Date.gregorian_leap?(2000) #=> true
static VALUE date_s_gregorian_leap_p(VALUE klass, VALUE y) { VALUE nth; int ry; decode_year(y, -1, &nth, &ry); return f_boolcast(c_gregorian_leap_p(ry)); }
Creates a date object denoting the given calendar date.
In this class, BCE years are counted astronomically. Thus, the year before the year 1 is the year zero, and the year preceding the year zero is the year -1. The month and the day of month should be a negative or a positive number (as a relative month/day from the end of year/month when negative). They should not be zero.
The last argument should be a Julian day number which denotes the day of calendar reform. Date::ITALY (2299161=1582-10-15), Date::ENGLAND (2361222=1752-09-14), Date::GREGORIAN (the proleptic Gregorian calendar) and Date::JULIAN (the proleptic Julian calendar) can be specified as a day of calendar reform.
Date.new(2001) #=> #<Date: 2001-01-01 ...> Date.new(2001,2,3) #=> #<Date: 2001-02-03 ...> Date.new(2001,2,-1) #=> #<Date: 2001-02-28 ...>
See also jd.
static VALUE date_s_civil(int argc, VALUE *argv, VALUE klass) { VALUE vy, vm, vd, vsg, y, fr, fr2, ret; int m, d; double sg; rb_scan_args(argc, argv, "04", &vy, &vm, &vd, &vsg); y = INT2FIX(-4712); m = 1; d = 1; fr2 = INT2FIX(0); sg = DEFAULT_SG; switch (argc) { case 4: val2sg(vsg, sg); case 3: num2int_with_frac(d, positive_inf); case 2: m = NUM2INT(vm); case 1: y = vy; } if (guess_style(y, sg) < 0) { VALUE nth; int ry, rm, rd; if (!valid_gregorian_p(y, m, d, &nth, &ry, &rm, &rd)) rb_raise(rb_eArgError, "invalid date"); ret = d_simple_new_internal(klass, nth, 0, sg, ry, rm, rd, HAVE_CIVIL); } else { VALUE nth; int ry, rm, rd, rjd, ns; if (!valid_civil_p(y, m, d, sg, &nth, &ry, &rm, &rd, &rjd, &ns)) rb_raise(rb_eArgError, "invalid date"); ret = d_simple_new_internal(klass, nth, rjd, sg, ry, rm, rd, HAVE_JD | HAVE_CIVIL); } add_frac(); return ret; }
Creates a date object denoting the given ordinal date.
The day of year should be a negative or a positive number (as a relative day from the end of year when negative). It should not be zero.
Date.ordinal(2001) #=> #<Date: 2001-01-01 ...> Date.ordinal(2001,34) #=> #<Date: 2001-02-03 ...> Date.ordinal(2001,-1) #=> #<Date: 2001-12-31 ...>
See also jd and new.
static VALUE date_s_ordinal(int argc, VALUE *argv, VALUE klass) { VALUE vy, vd, vsg, y, fr, fr2, ret; int d; double sg; rb_scan_args(argc, argv, "03", &vy, &vd, &vsg); y = INT2FIX(-4712); d = 1; fr2 = INT2FIX(0); sg = DEFAULT_SG; switch (argc) { case 3: val2sg(vsg, sg); case 2: num2int_with_frac(d, positive_inf); case 1: y = vy; } { VALUE nth; int ry, rd, rjd, ns; if (!valid_ordinal_p(y, d, sg, &nth, &ry, &rd, &rjd, &ns)) rb_raise(rb_eArgError, "invalid date"); ret = d_simple_new_internal(klass, nth, rjd, sg, 0, 0, 0, HAVE_JD); } add_frac(); return ret; }
Parses the given representation of date and time, and creates a date object. This method does not function as a validator.
If the optional second argument is true and the detected year is in the range “00” to “99”, considers the year a 2-digit form and makes it full.
Date.parse('2001-02-03') #=> #<Date: 2001-02-03 ...> Date.parse('20010203') #=> #<Date: 2001-02-03 ...> Date.parse('3rd Feb 2001') #=> #<Date: 2001-02-03 ...>
static VALUE date_s_parse(int argc, VALUE *argv, VALUE klass) { VALUE str, comp, sg; rb_scan_args(argc, argv, "03", &str, &comp, &sg); switch (argc) { case 0: str = rb_str_new2("-4712-01-01"); case 1: comp = Qtrue; case 2: sg = INT2FIX(DEFAULT_SG); } { VALUE argv2[2], hash; argv2[0] = str; argv2[1] = comp; hash = date_s__parse(2, argv2, klass); return d_new_by_frags(klass, hash, sg); } }
Creates a new Date object by parsing from a string according to some typical RFC 2822 formats.
Date.rfc2822('Sat, 3 Feb 2001 00:00:00 +0000') #=> #<Date: 2001-02-03 ...>
static VALUE date_s_rfc2822(int argc, VALUE *argv, VALUE klass) { VALUE str, sg; rb_scan_args(argc, argv, "02", &str, &sg); switch (argc) { case 0: str = rb_str_new2("Mon, 1 Jan -4712 00:00:00 +0000"); case 1: sg = INT2FIX(DEFAULT_SG); } { VALUE hash = date_s__rfc2822(klass, str); return d_new_by_frags(klass, hash, sg); } }
Creates a new Date object by parsing from a string according to some typical RFC 3339 formats.
Date.rfc3339('2001-02-03T04:05:06+07:00') #=> #<Date: 2001-02-03 ...>
static VALUE date_s_rfc3339(int argc, VALUE *argv, VALUE klass) { VALUE str, sg; rb_scan_args(argc, argv, "02", &str, &sg); switch (argc) { case 0: str = rb_str_new2("-4712-01-01T00:00:00+00:00"); case 1: sg = INT2FIX(DEFAULT_SG); } { VALUE hash = date_s__rfc3339(klass, str); return d_new_by_frags(klass, hash, sg); } }
Creates a new Date object by parsing from a string according to some typical RFC 2822 formats.
Date.rfc2822('Sat, 3 Feb 2001 00:00:00 +0000') #=> #<Date: 2001-02-03 ...>
static VALUE date_s_rfc2822(int argc, VALUE *argv, VALUE klass) { VALUE str, sg; rb_scan_args(argc, argv, "02", &str, &sg); switch (argc) { case 0: str = rb_str_new2("Mon, 1 Jan -4712 00:00:00 +0000"); case 1: sg = INT2FIX(DEFAULT_SG); } { VALUE hash = date_s__rfc2822(klass, str); return d_new_by_frags(klass, hash, sg); } }
Parses the given representation of date and time with the given template, and creates a date object. strptime does not support specification of flags and width unlike strftime.
Date.strptime('2001-02-03', '%Y-%m-%d') #=> #<Date: 2001-02-03 ...> Date.strptime('03-02-2001', '%d-%m-%Y') #=> #<Date: 2001-02-03 ...> Date.strptime('2001-034', '%Y-%j') #=> #<Date: 2001-02-03 ...> Date.strptime('2001-W05-6', '%G-W%V-%u') #=> #<Date: 2001-02-03 ...> Date.strptime('2001 04 6', '%Y %U %w') #=> #<Date: 2001-02-03 ...> Date.strptime('2001 05 6', '%Y %W %u') #=> #<Date: 2001-02-03 ...> Date.strptime('sat3feb01', '%a%d%b%y') #=> #<Date: 2001-02-03 ...>
See also strptime(3) and strftime.
static VALUE date_s_strptime(int argc, VALUE *argv, VALUE klass) { VALUE str, fmt, sg; rb_scan_args(argc, argv, "03", &str, &fmt, &sg); switch (argc) { case 0: str = rb_str_new2("-4712-01-01"); case 1: fmt = rb_str_new2("%F"); case 2: sg = INT2FIX(DEFAULT_SG); } { VALUE argv2[2], hash; argv2[0] = str; argv2[1] = fmt; hash = date_s__strptime(2, argv2, klass); return d_new_by_frags(klass, hash, sg); } }
Creates a date object denoting the present day.
static VALUE date_s_today(int argc, VALUE *argv, VALUE klass) { VALUE vsg, nth, ret; double sg; time_t t; struct tm tm; int y, ry, m, d; rb_scan_args(argc, argv, "01", &vsg); if (argc < 1) sg = DEFAULT_SG; else val2sg(vsg, sg); if (time(&t) == -1) rb_sys_fail("time"); tzset(); if (!localtime_r(&t, &tm)) rb_sys_fail("localtime"); y = tm.tm_year + 1900; m = tm.tm_mon + 1; d = tm.tm_mday; decode_year(INT2FIX(y), -1, &nth, &ry); ret = d_simple_new_internal(klass, nth, 0, GREGORIAN, ry, m, d, HAVE_CIVIL); { get_d1(ret); set_sg(dat, sg); } return ret; }
Returns true if the given calendar date is valid, and false if not.
Date.valid_date?(2001,2,3) #=> true Date.valid_date?(2001,2,29) #=> false
See also jd and civil.
static VALUE date_s_valid_civil_p(int argc, VALUE *argv, VALUE klass) { VALUE vy, vm, vd, vsg; VALUE argv2[4]; rb_scan_args(argc, argv, "31", &vy, &vm, &vd, &vsg); argv2[0] = vy; argv2[1] = vm; argv2[2] = vd; if (argc < 4) argv2[3] = INT2FIX(DEFAULT_SG); else argv2[3] = vsg; if (NIL_P(valid_civil_sub(4, argv2, klass, 0))) return Qfalse; return Qtrue; }
Returns true if the given week date is valid, and false if not.
Date.valid_commercial?(2001,5,6) #=> true Date.valid_commercial?(2001,5,8) #=> false
See also jd and commercial.
static VALUE date_s_valid_commercial_p(int argc, VALUE *argv, VALUE klass) { VALUE vy, vw, vd, vsg; VALUE argv2[4]; rb_scan_args(argc, argv, "31", &vy, &vw, &vd, &vsg); argv2[0] = vy; argv2[1] = vw; argv2[2] = vd; if (argc < 4) argv2[3] = INT2FIX(DEFAULT_SG); else argv2[3] = vsg; if (NIL_P(valid_commercial_sub(4, argv2, klass, 0))) return Qfalse; return Qtrue; }
Returns true if the given calendar date is valid, and false if not.
Date.valid_date?(2001,2,3) #=> true Date.valid_date?(2001,2,29) #=> false
See also jd and civil.
static VALUE date_s_valid_civil_p(int argc, VALUE *argv, VALUE klass) { VALUE vy, vm, vd, vsg; VALUE argv2[4]; rb_scan_args(argc, argv, "31", &vy, &vm, &vd, &vsg); argv2[0] = vy; argv2[1] = vm; argv2[2] = vd; if (argc < 4) argv2[3] = INT2FIX(DEFAULT_SG); else argv2[3] = vsg; if (NIL_P(valid_civil_sub(4, argv2, klass, 0))) return Qfalse; return Qtrue; }
Just returns true. It's nonsense, but is for symmetry.
Date.valid_jd?(2451944) #=> true
See also jd.
static VALUE date_s_valid_jd_p(int argc, VALUE *argv, VALUE klass) { VALUE vjd, vsg; VALUE argv2[2]; rb_scan_args(argc, argv, "11", &vjd, &vsg); argv2[0] = vjd; if (argc < 2) argv2[1] = INT2FIX(DEFAULT_SG); else argv2[1] = vsg; if (NIL_P(valid_jd_sub(2, argv2, klass, 0))) return Qfalse; return Qtrue; }
Returns true if the given ordinal date is valid, and false if not.
Date.valid_ordinal?(2001,34) #=> true Date.valid_ordinal?(2001,366) #=> false
See also jd and ordinal.
static VALUE date_s_valid_ordinal_p(int argc, VALUE *argv, VALUE klass) { VALUE vy, vd, vsg; VALUE argv2[3]; rb_scan_args(argc, argv, "21", &vy, &vd, &vsg); argv2[0] = vy; argv2[1] = vd; if (argc < 3) argv2[2] = INT2FIX(DEFAULT_SG); else argv2[2] = vsg; if (NIL_P(valid_ordinal_sub(3, argv2, klass, 0))) return Qfalse; return Qtrue; }
Creates a new Date object by parsing from a string according to some typical XML Schema formats.
Date.xmlschema('2001-02-03') #=> #<Date: 2001-02-03 ...>
static VALUE date_s_xmlschema(int argc, VALUE *argv, VALUE klass) { VALUE str, sg; rb_scan_args(argc, argv, "02", &str, &sg); switch (argc) { case 0: str = rb_str_new2("-4712-01-01"); case 1: sg = INT2FIX(DEFAULT_SG); } { VALUE hash = date_s__xmlschema(klass, str); return d_new_by_frags(klass, hash, sg); } }
Returns a date object pointing other days after self. The other should be a numeric value. If the other is flonum, assumes its precision is at most nanosecond.
Date.new(2001,2,3) + 1 #=> #<Date: 2001-02-04 ...> DateTime.new(2001,2,3) + Rational(1,2) #=> #<DateTime: 2001-02-03T12:00:00+00:00 ...> DateTime.new(2001,2,3) + Rational(-1,2) #=> #<DateTime: 2001-02-02T12:00:00+00:00 ...> DateTime.jd(0,12) + DateTime.new(2001,2,3).ajd #=> #<DateTime: 2001-02-03T00:00:00+00:00 ...>
static VALUE d_lite_plus(VALUE self, VALUE other) { get_d1(self); switch (TYPE(other)) { case T_FIXNUM: { VALUE nth; long t; int jd; nth = m_nth(dat); t = FIX2LONG(other); if (DIV(t, CM_PERIOD)) { nth = f_add(nth, INT2FIX(DIV(t, CM_PERIOD))); t = MOD(t, CM_PERIOD); } if (!t) jd = m_jd(dat); else { jd = m_jd(dat) + (int)t; canonicalize_jd(nth, jd); } if (simple_dat_p(dat)) return d_simple_new_internal(rb_obj_class(self), nth, jd, dat->s.sg, 0, 0, 0, (dat->s.flags | HAVE_JD) & ~HAVE_CIVIL); else return d_complex_new_internal(rb_obj_class(self), nth, jd, dat->c.df, dat->c.sf, dat->c.of, dat->c.sg, 0, 0, 0, #ifndef USE_PACK dat->c.hour, dat->c.min, dat->c.sec, #else EX_HOUR(dat->c.pc), EX_MIN(dat->c.pc), EX_SEC(dat->c.pc), #endif (dat->c.flags | HAVE_JD) & ~HAVE_CIVIL); } break; case T_BIGNUM: { VALUE nth; int jd, s; if (f_positive_p(other)) s = +1; else { s = -1; other = f_negate(other); } nth = f_idiv(other, INT2FIX(CM_PERIOD)); jd = FIX2INT(f_mod(other, INT2FIX(CM_PERIOD))); if (s < 0) { nth = f_negate(nth); jd = -jd; } if (!jd) jd = m_jd(dat); else { jd = m_jd(dat) + jd; canonicalize_jd(nth, jd); } if (f_zero_p(nth)) nth = m_nth(dat); else nth = f_add(m_nth(dat), nth); if (simple_dat_p(dat)) return d_simple_new_internal(rb_obj_class(self), nth, jd, dat->s.sg, 0, 0, 0, (dat->s.flags | HAVE_JD) & ~HAVE_CIVIL); else return d_complex_new_internal(rb_obj_class(self), nth, jd, dat->c.df, dat->c.sf, dat->c.of, dat->c.sg, 0, 0, 0, #ifndef USE_PACK dat->c.hour, dat->c.min, dat->c.sec, #else EX_HOUR(dat->c.pc), EX_MIN(dat->c.pc), EX_SEC(dat->c.pc), #endif (dat->c.flags | HAVE_JD) & ~HAVE_CIVIL); } break; case T_FLOAT: { double jd, o, tmp; int s, df; VALUE nth, sf; o = RFLOAT_VALUE(other); if (o > 0) s = +1; else { s = -1; o = -o; } o = modf(o, &tmp); if (!floor(tmp / CM_PERIOD)) { nth = INT2FIX(0); jd = (int)tmp; } else { double i, f; f = modf(tmp / CM_PERIOD, &i); nth = f_floor(DBL2NUM(i)); jd = (int)(f * CM_PERIOD); } o *= DAY_IN_SECONDS; o = modf(o, &tmp); df = (int)tmp; o *= SECOND_IN_NANOSECONDS; sf = INT2FIX((int)round(o)); if (s < 0) { jd = -jd; df = -df; sf = f_negate(sf); } if (f_zero_p(sf)) sf = m_sf(dat); else { sf = f_add(m_sf(dat), sf); if (f_lt_p(sf, INT2FIX(0))) { df -= 1; sf = f_add(sf, INT2FIX(SECOND_IN_NANOSECONDS)); } else if (f_ge_p(sf, INT2FIX(SECOND_IN_NANOSECONDS))) { df += 1; sf = f_sub(sf, INT2FIX(SECOND_IN_NANOSECONDS)); } } if (!df) df = m_df(dat); else { df = m_df(dat) + df; if (df < 0) { jd -= 1; df += DAY_IN_SECONDS; } else if (df >= DAY_IN_SECONDS) { jd += 1; df -= DAY_IN_SECONDS; } } if (!jd) jd = m_jd(dat); else { jd = m_jd(dat) + jd; canonicalize_jd(nth, jd); } if (f_zero_p(nth)) nth = m_nth(dat); else nth = f_add(m_nth(dat), nth); if (!df && f_zero_p(sf) && !m_of(dat)) return d_simple_new_internal(rb_obj_class(self), nth, (int)jd, m_sg(dat), 0, 0, 0, (dat->s.flags | HAVE_JD) & ~(HAVE_CIVIL | HAVE_TIME | COMPLEX_DAT)); else return d_complex_new_internal(rb_obj_class(self), nth, (int)jd, df, sf, m_of(dat), m_sg(dat), 0, 0, 0, 0, 0, 0, (dat->c.flags | HAVE_JD | HAVE_DF) & ~(HAVE_CIVIL | HAVE_TIME)); } break; default: if (!k_numeric_p(other)) rb_raise(rb_eTypeError, "expected numeric"); other = f_to_r(other); #ifdef CANONICALIZATION_FOR_MATHN if (!k_rational_p(other)) return d_lite_plus(self, other); #endif /* fall through */ case T_RATIONAL: { VALUE nth, sf, t; int jd, df, s; if (wholenum_p(other)) return d_lite_plus(self, RRATIONAL(other)->num); if (f_positive_p(other)) s = +1; else { s = -1; other = f_negate(other); } nth = f_idiv(other, INT2FIX(CM_PERIOD)); t = f_mod(other, INT2FIX(CM_PERIOD)); jd = FIX2INT(f_idiv(t, INT2FIX(1))); t = f_mod(t, INT2FIX(1)); t = f_mul(t, INT2FIX(DAY_IN_SECONDS)); df = FIX2INT(f_idiv(t, INT2FIX(1))); t = f_mod(t, INT2FIX(1)); sf = f_mul(t, INT2FIX(SECOND_IN_NANOSECONDS)); if (s < 0) { nth = f_negate(nth); jd = -jd; df = -df; sf = f_negate(sf); } if (f_zero_p(sf)) sf = m_sf(dat); else { sf = f_add(m_sf(dat), sf); if (f_lt_p(sf, INT2FIX(0))) { df -= 1; sf = f_add(sf, INT2FIX(SECOND_IN_NANOSECONDS)); } else if (f_ge_p(sf, INT2FIX(SECOND_IN_NANOSECONDS))) { df += 1; sf = f_sub(sf, INT2FIX(SECOND_IN_NANOSECONDS)); } } if (!df) df = m_df(dat); else { df = m_df(dat) + df; if (df < 0) { jd -= 1; df += DAY_IN_SECONDS; } else if (df >= DAY_IN_SECONDS) { jd += 1; df -= DAY_IN_SECONDS; } } if (!jd) jd = m_jd(dat); else { jd = m_jd(dat) + jd; canonicalize_jd(nth, jd); } if (f_zero_p(nth)) nth = m_nth(dat); else nth = f_add(m_nth(dat), nth); if (!df && f_zero_p(sf) && !m_of(dat)) return d_simple_new_internal(rb_obj_class(self), nth, jd, m_sg(dat), 0, 0, 0, (dat->s.flags | HAVE_JD) & ~(HAVE_CIVIL | HAVE_TIME | COMPLEX_DAT)); else return d_complex_new_internal(rb_obj_class(self), nth, jd, df, sf, m_of(dat), m_sg(dat), 0, 0, 0, 0, 0, 0, (dat->c.flags | HAVE_JD | HAVE_DF) & ~(HAVE_CIVIL | HAVE_TIME)); } break; } }
Returns the difference between the two dates if the other is a date object. If the other is a numeric value, returns a date object pointing other days before self. If the other is flonum, assumes its precision is at most nanosecond.
Date.new(2001,2,3) - 1 #=> #<Date: 2001-02-02 ...> DateTime.new(2001,2,3) - Rational(1,2) #=> #<DateTime: 2001-02-02T12:00:00+00:00 ...> Date.new(2001,2,3) - Date.new(2001) #=> (33/1) DateTime.new(2001,2,3) - DateTime.new(2001,2,2,12) #=> (1/2)
static VALUE d_lite_minus(VALUE self, VALUE other) { if (k_date_p(other)) return minus_dd(self, other); switch (TYPE(other)) { case T_FIXNUM: return d_lite_plus(self, LONG2NUM(-FIX2LONG(other))); case T_FLOAT: return d_lite_plus(self, DBL2NUM(-RFLOAT_VALUE(other))); default: if (!k_numeric_p(other)) rb_raise(rb_eTypeError, "expected numeric"); /* fall through */ case T_BIGNUM: case T_RATIONAL: return d_lite_plus(self, f_negate(other)); } }
Returns a date object pointing n months before self. The n should be a numeric value.
Date.new(2001,2,3) << 1 #=> #<Date: 2001-01-03 ...> Date.new(2001,1,31) << 11 #=> #<Date: 2000-02-29 ...> Date.new(2001,2,3) << -1 #=> #<Date: 2001-03-03 ...>
static VALUE d_lite_lshift(VALUE self, VALUE other) { return d_lite_rshift(self, f_negate(other)); }
Compares the two dates and returns -1, zero, 1 or nil. The other should be a date object or a numeric value as an astronomical Julian day number.
Date.new(2001,2,3) <=> Date.new(2001,2,4) #=> -1 Date.new(2001,2,3) <=> Date.new(2001,2,3) #=> 0 Date.new(2001,2,3) <=> Date.new(2001,2,2) #=> 1 Date.new(2001,2,3) <=> Object.new #=> nil Date.new(2001,2,3) <=> Rational(4903887,2)#=> 0
See also Comparable.
static VALUE d_lite_cmp(VALUE self, VALUE other) { if (!k_date_p(other)) return cmp_gen(self, other); { get_d2(self, other); if (!(simple_dat_p(adat) && simple_dat_p(bdat) && m_gregorian_p(adat) == m_gregorian_p(bdat))) return cmp_dd(self, other); { VALUE a_nth, b_nth; int a_jd, b_jd; m_canonicalize_jd(adat); m_canonicalize_jd(bdat); a_nth = m_nth(adat); b_nth = m_nth(bdat); if (f_eqeq_p(a_nth, b_nth)) { a_jd = m_jd(adat); b_jd = m_jd(bdat); if (a_jd == b_jd) { return INT2FIX(0); } else if (a_jd < b_jd) { return INT2FIX(-1); } else { return INT2FIX(1); } } else if (a_nth < b_nth) { return INT2FIX(-1); } else { return INT2FIX(1); } } } }
Returns true if they are the same day.
Date.new(2001,2,3) === Date.new(2001,2,3) #=> true Date.new(2001,2,3) === Date.new(2001,2,4) #=> false DateTime.new(2001,2,3) === DateTime.new(2001,2,3,12) #=> true DateTime.new(2001,2,3) === DateTime.new(2001,2,3,0,0,0,'+24:00') #=> true DateTime.new(2001,2,3) === DateTime.new(2001,2,4,0,0,0,'+24:00') #=> false
static VALUE d_lite_equal(VALUE self, VALUE other) { if (!k_date_p(other)) return equal_gen(self, other); { get_d2(self, other); if (!(m_gregorian_p(adat) == m_gregorian_p(bdat))) return equal_gen(self, other); { VALUE a_nth, b_nth; int a_jd, b_jd; m_canonicalize_jd(adat); m_canonicalize_jd(bdat); a_nth = m_nth(adat); b_nth = m_nth(bdat); a_jd = m_local_jd(adat); b_jd = m_local_jd(bdat); if (f_eqeq_p(a_nth, b_nth) && a_jd == b_jd) return Qtrue; return Qfalse; } } }
Returns a date object pointing n months after self. The n should be a numeric value.
Date.new(2001,2,3) >> 1 #=> #<Date: 2001-03-03 ...> Date.new(2001,1,31) >> 1 #=> #<Date: 2001-02-28 ...> Date.new(2001,2,3) >> -2 #=> #<Date: 2000-12-03 ...>
static VALUE d_lite_rshift(VALUE self, VALUE other) { VALUE t, y, nth, rjd2; int m, d, rjd; double sg; get_d1(self); t = f_add3(f_mul(m_real_year(dat), INT2FIX(12)), INT2FIX(m_mon(dat) - 1), other); if (FIXNUM_P(t)) { long it = FIX2LONG(t); y = LONG2NUM(DIV(it, 12)); it = MOD(it, 12); m = (int)it + 1; } else { y = f_idiv(t, INT2FIX(12)); t = f_mod(t, INT2FIX(12)); m = FIX2INT(t) + 1; } d = m_mday(dat); sg = m_sg(dat); while (1) { int ry, rm, rd, ns; if (valid_civil_p(y, m, d, sg, &nth, &ry, &rm, &rd, &rjd, &ns)) break; if (--d < 1) rb_raise(rb_eArgError, "invalid date"); } encode_jd(nth, rjd, &rjd2); return d_lite_plus(self, f_sub(rjd2, m_real_local_jd(dat))); }
Returns the astronomical Julian day number. This is a fractional number, which is not adjusted by the offset.
DateTime.new(2001,2,3,4,5,6,'+7').ajd #=> (11769328217/4800) DateTime.new(2001,2,2,14,5,6,'-7').ajd #=> (11769328217/4800)
static VALUE d_lite_ajd(VALUE self) { get_d1(self); return m_ajd(dat); }
Returns the astronomical modified Julian day number. This is a fractional number, which is not adjusted by the offset.
DateTime.new(2001,2,3,4,5,6,'+7').amjd #=> (249325817/4800) DateTime.new(2001,2,2,14,5,6,'-7').amjd #=> (249325817/4800)
static VALUE d_lite_amjd(VALUE self) { get_d1(self); return m_amjd(dat); }
Returns a string in asctime(3) format (but without “n0” at the end). This method is equivalent to strftime('%c').
See also asctime(3) or ctime(3).
static VALUE d_lite_asctime(VALUE self) { return strftimev("%a %b %e %H:%M:%S %Y", self, set_tmx); }
Returns a string in asctime(3) format (but without “n0” at the end). This method is equivalent to strftime('%c').
See also asctime(3) or ctime(3).
static VALUE d_lite_asctime(VALUE self) { return strftimev("%a %b %e %H:%M:%S %Y", self, set_tmx); }
Returns the day of calendar week (1-7, Monday is 1).
Date.new(2001,2,3).cwday #=> 6
static VALUE d_lite_cwday(VALUE self) { get_d1(self); return INT2FIX(m_cwday(dat)); }
Returns the calendar week number (1-53).
Date.new(2001,2,3).cweek #=> 5
static VALUE d_lite_cweek(VALUE self) { get_d1(self); return INT2FIX(m_cweek(dat)); }
Returns the calendar week based year.
Date.new(2001,2,3).cwyear #=> 2001 Date.new(2000,1,1).cwyear #=> 1999
static VALUE d_lite_cwyear(VALUE self) { get_d1(self); return m_real_cwyear(dat); }
Returns the day of the month (1-31).
Date.new(2001,2,3).mday #=> 3
static VALUE d_lite_mday(VALUE self) { get_d1(self); return INT2FIX(m_mday(dat)); }
Returns the fractional part of the day.
DateTime.new(2001,2,3,12).day_fraction #=> (1/2)
static VALUE d_lite_day_fraction(VALUE self) { get_d1(self); if (simple_dat_p(dat)) return INT2FIX(0); return m_fr(dat); }
This method is equivalent to step(min, -1){|date| …}.
static VALUE d_lite_downto(VALUE self, VALUE min) { VALUE date; RETURN_ENUMERATOR(self, 1, &min); date = self; while (FIX2INT(d_lite_cmp(date, min)) >= 0) { rb_yield(date); date = d_lite_plus(date, INT2FIX(-1)); } return self; }
This method is equivalent to #new_start(Date::ENGLAND).
static VALUE d_lite_england(VALUE self) { return dup_obj_with_new_start(self, ENGLAND); }
Returns true if the date is Friday.
static VALUE d_lite_friday_p(VALUE self) { get_d1(self); return f_boolcast(m_wday(dat) == 5); }
This method is equivalent to #new_start(Date::GREGORIAN).
static VALUE d_lite_gregorian(VALUE self) { return dup_obj_with_new_start(self, GREGORIAN); }
Retunrs true if the date is on or after the day of calendar reform.
Date.new(1582,10,15).gregorian? #=> true (Date.new(1582,10,15) - 1).gregorian? #=> false
static VALUE d_lite_gregorian_p(VALUE self) { get_d1(self); return f_boolcast(m_gregorian_p(dat)); }
This method is equivalent to strftime('%a, %d %b %Y %T GMT'). See also RFC 2616.
static VALUE d_lite_httpdate(VALUE self) { volatile VALUE dup = dup_obj_with_new_offset(self, 0); return strftimev("%a, %d %b %Y %T GMT", dup, set_tmx); }
Returns the value as a string for inspection.
Date.new(2001,2,3).inspect #=> "#<Date: 2001-02-03 ((2451944j,0s,0n),+0s,2299161j)>" DateTime.new(2001,2,3,4,5,6,'-7').inspect #=> "#<DateTime: 2001-02-03T04:05:06-07:00 ((2451944j,39906s,0n),-25200s,2299161j)>"
static VALUE d_lite_inspect(VALUE self) { get_d1(self); { VALUE to_s; RB_GC_GUARD(to_s) = f_to_s(self); return mk_inspect(dat, rb_obj_classname(self), RSTRING_PTR(to_s)); } }
This method is equivalent to strftime('%F').
static VALUE d_lite_iso8601(VALUE self) { return strftimev("%Y-%m-%d", self, set_tmx); }
This method is equivalent to #new_start(Date::ITALY).
static VALUE d_lite_italy(VALUE self) { return dup_obj_with_new_start(self, ITALY); }
Returns the Julian day number. This is a whole number, which is adjusted by the offset as the local time.
DateTime.new(2001,2,3,4,5,6,'+7').jd #=> 2451944 DateTime.new(2001,2,3,4,5,6,'-7').jd #=> 2451944
static VALUE d_lite_jd(VALUE self) { get_d1(self); return m_real_local_jd(dat); }
Returns a string in a JIS X 0301 format.
Date.new(2001,2,3).jisx0301 #=> "H13.02.03"
static VALUE d_lite_jisx0301(VALUE self) { VALUE s; get_d1(self); s = jisx0301_date(m_real_local_jd(dat), m_real_year(dat)); return strftimev(RSTRING_PTR(s), self, set_tmx); }
This method is equivalent to #new_start(Date::JULIAN).
static VALUE d_lite_julian(VALUE self) { return dup_obj_with_new_start(self, JULIAN); }
Retruns true if the date is before the day of calendar reform.
Date.new(1582,10,15).julian? #=> false (Date.new(1582,10,15) - 1).julian? #=> true
static VALUE d_lite_julian_p(VALUE self) { get_d1(self); return f_boolcast(m_julian_p(dat)); }
Returns the Lilian day number. This is a whole number, which is adjusted by the offset as the local time.
Date.new(2001,2,3).ld #=> 152784
static VALUE d_lite_ld(VALUE self) { get_d1(self); return f_sub(m_real_local_jd(dat), INT2FIX(2299160)); }
Returns true if the year is a leap year.
Date.new(2000).leap? #=> true Date.new(2001).leap? #=> false
static VALUE d_lite_leap_p(VALUE self) { int rjd, ns, ry, rm, rd; get_d1(self); if (m_gregorian_p(dat)) return f_boolcast(c_gregorian_leap_p(m_year(dat))); c_civil_to_jd(m_year(dat), 3, 1, m_virtual_sg(dat), &rjd, &ns); c_jd_to_civil(rjd - 1, m_virtual_sg(dat), &ry, &rm, &rd); return f_boolcast(rd == 29); }
Returns the day of the month (1-31).
Date.new(2001,2,3).mday #=> 3
static VALUE d_lite_mday(VALUE self) { get_d1(self); return INT2FIX(m_mday(dat)); }
Returns the modified Julian day number. This is a whole number, which is adjusted by the offset as the local time.
DateTime.new(2001,2,3,4,5,6,'+7').mjd #=> 51943 DateTime.new(2001,2,3,4,5,6,'-7').mjd #=> 51943
static VALUE d_lite_mjd(VALUE self) { get_d1(self); return f_sub(m_real_local_jd(dat), INT2FIX(2400001)); }
Returns the month (1-12).
Date.new(2001,2,3).mon #=> 2
static VALUE d_lite_mon(VALUE self) { get_d1(self); return INT2FIX(m_mon(dat)); }
Returns true if the date is Monday.
static VALUE d_lite_monday_p(VALUE self) { get_d1(self); return f_boolcast(m_wday(dat) == 1); }
Returns the month (1-12).
Date.new(2001,2,3).mon #=> 2
static VALUE d_lite_mon(VALUE self) { get_d1(self); return INT2FIX(m_mon(dat)); }
Duplicates self and resets its the day of calendar reform.
d = Date.new(1582,10,15) d.new_start(Date::JULIAN) #=> #<Date: 1582-10-05 ...>
static VALUE d_lite_new_start(int argc, VALUE *argv, VALUE self) { VALUE vsg; double sg; rb_scan_args(argc, argv, "01", &vsg); sg = DEFAULT_SG; if (argc >= 1) val2sg(vsg, sg); return dup_obj_with_new_start(self, sg); }
Returns a date object denoting the following day.
static VALUE d_lite_next(VALUE self) { return d_lite_next_day(0, (VALUE *)NULL, self); }
This method is equivalent to d + n.
static VALUE d_lite_next_day(int argc, VALUE *argv, VALUE self) { VALUE n; rb_scan_args(argc, argv, "01", &n); if (argc < 1) n = INT2FIX(1); return d_lite_plus(self, n); }
This method is equivalent to d >> n
static VALUE d_lite_next_month(int argc, VALUE *argv, VALUE self) { VALUE n; rb_scan_args(argc, argv, "01", &n); if (argc < 1) n = INT2FIX(1); return d_lite_rshift(self, n); }
This method is equivalent to d >> (n * 12)
static VALUE d_lite_next_year(int argc, VALUE *argv, VALUE self) { VALUE n; rb_scan_args(argc, argv, "01", &n); if (argc < 1) n = INT2FIX(1); return d_lite_rshift(self, f_mul(n, INT2FIX(12))); }
This method is equivalent to d - n.
static VALUE d_lite_prev_day(int argc, VALUE *argv, VALUE self) { VALUE n; rb_scan_args(argc, argv, "01", &n); if (argc < 1) n = INT2FIX(1); return d_lite_minus(self, n); }
This method is equivalent to d << n
static VALUE d_lite_prev_month(int argc, VALUE *argv, VALUE self) { VALUE n; rb_scan_args(argc, argv, "01", &n); if (argc < 1) n = INT2FIX(1); return d_lite_lshift(self, n); }
This method is equivalent to d << (n * 12)
static VALUE d_lite_prev_year(int argc, VALUE *argv, VALUE self) { VALUE n; rb_scan_args(argc, argv, "01", &n); if (argc < 1) n = INT2FIX(1); return d_lite_lshift(self, f_mul(n, INT2FIX(12))); }
This method is equivalent to strftime('%a, %-d %b %Y %T %z').
static VALUE d_lite_rfc2822(VALUE self) { return strftimev("%a, %-d %b %Y %T %z", self, set_tmx); }
This method is equivalent to strftime('%FT%T%:z').
static VALUE d_lite_rfc3339(VALUE self) { return strftimev("%Y-%m-%dT%H:%M:%S%:z", self, set_tmx); }
This method is equivalent to strftime('%a, %-d %b %Y %T %z').
static VALUE d_lite_rfc2822(VALUE self) { return strftimev("%a, %-d %b %Y %T %z", self, set_tmx); }
Returns true if the date is Saturday.
static VALUE d_lite_saturday_p(VALUE self) { get_d1(self); return f_boolcast(m_wday(dat) == 6); }
Returns the Julian day number denoting the day of calendar reform.
Date.new(2001,2,3).start #=> 2299161.0 Date.new(2001,2,3,Date::GREGORIAN).start #=> -Infinity
static VALUE d_lite_start(VALUE self) { get_d1(self); return DBL2NUM(m_sg(dat)); }
Iterates evaluation of the given block, which takes a date object. The limit should be a date object.
Date.new(2001).step(Date.new(2001,-1,-1)).select{|d| d.sunday?}.size #=> 52
static VALUE d_lite_step(int argc, VALUE *argv, VALUE self) { VALUE limit, step, date; rb_scan_args(argc, argv, "11", &limit, &step); if (argc < 2) step = INT2FIX(1); #if 0 if (f_zero_p(step)) rb_raise(rb_eArgError, "step can't be 0"); #endif RETURN_ENUMERATOR(self, argc, argv); date = self; switch (FIX2INT(f_cmp(step, INT2FIX(0)))) { case -1: while (FIX2INT(d_lite_cmp(date, limit)) >= 0) { rb_yield(date); date = d_lite_plus(date, step); } break; case 0: while (1) rb_yield(date); break; case 1: while (FIX2INT(d_lite_cmp(date, limit)) <= 0) { rb_yield(date); date = d_lite_plus(date, step); } break; default: abort(); } return self; }
Formats date according to the directives in the given format string. The directives begins with a percent (%) character. Any text not listed as a directive will be passed through to the output string. The directive consists of a percent (%) character, zero or more flags, optional minimum field width, optional modifier and a conversion specifier as follows. %<flags><width><modifier><conversion> Flags: - don't pad a numerical output. _ use spaces for padding. 0 use zeros for padding. ^ upcase the result string. # change case. The minimum field width specifies the minimum width. The modifiers are "E", "O", ":", "::" and ":::". "E" and "O" are ignored. No effect to result currently. Format directives: Date (Year, Month, Day): %Y - Year with century (can be negative, 4 digits at least) -0001, 0000, 1995, 2009, 14292, etc. %C - year / 100 (round down. 20 in 2009) %y - year % 100 (00..99) %m - Month of the year, zero-padded (01..12) %_m blank-padded ( 1..12) %-m no-padded (1..12) %B - The full month name (``January'') %^B uppercased (``JANUARY'') %b - The abbreviated month name (``Jan'') %^b uppercased (``JAN'') %h - Equivalent to %b %d - Day of the month, zero-padded (01..31) %-d no-padded (1..31) %e - Day of the month, blank-padded ( 1..31) %j - Day of the year (001..366) Time (Hour, Minute, Second, Subsecond): %H - Hour of the day, 24-hour clock, zero-padded (00..23) %k - Hour of the day, 24-hour clock, blank-padded ( 0..23) %I - Hour of the day, 12-hour clock, zero-padded (01..12) %l - Hour of the day, 12-hour clock, blank-padded ( 1..12) %P - Meridian indicator, lowercase (``am'' or ``pm'') %p - Meridian indicator, uppercase (``AM'' or ``PM'') %M - Minute of the hour (00..59) %S - Second of the minute (00..59) %L - Millisecond of the second (000..999) %N - Fractional seconds digits, default is 9 digits (nanosecond) %3N millisecond (3 digits) %15N femtosecond (15 digits) %6N microsecond (6 digits) %18N attosecond (18 digits) %9N nanosecond (9 digits) %21N zeptosecond (21 digits) %12N picosecond (12 digits) %24N yoctosecond (24 digits) Time zone: %z - Time zone as hour and minute offset from UTC (e.g. +0900) %:z - hour and minute offset from UTC with a colon (e.g. +09:00) %::z - hour, minute and second offset from UTC (e.g. +09:00:00) %:::z - hour, minute and second offset from UTC (e.g. +09, +09:30, +09:30:30) %Z - Time zone abbreviation name or something similar information. Weekday: %A - The full weekday name (``Sunday'') %^A uppercased (``SUNDAY'') %a - The abbreviated name (``Sun'') %^a uppercased (``SUN'') %u - Day of the week (Monday is 1, 1..7) %w - Day of the week (Sunday is 0, 0..6) ISO 8601 week-based year and week number: The week 1 of YYYY starts with a Monday and includes YYYY-01-04. The days in the year before the first week are in the last week of the previous year. %G - The week-based year %g - The last 2 digits of the week-based year (00..99) %V - Week number of the week-based year (01..53) Week number: The week 1 of YYYY starts with a Sunday or Monday (according to %U or %W). The days in the year before the first week are in week 0. %U - Week number of the year. The week starts with Sunday. (00..53) %W - Week number of the year. The week starts with Monday. (00..53) Seconds since the Unix Epoch: %s - Number of seconds since 1970-01-01 00:00:00 UTC. %Q - Number of milliseconds since 1970-01-01 00:00:00 UTC. Literal string: %n - Newline character (\n) %t - Tab character (\t) %% - Literal ``%'' character Combination: %c - date and time (%a %b %e %T %Y) %D - Date (%m/%d/%y) %F - The ISO 8601 date format (%Y-%m-%d) %v - VMS date (%e-%b-%Y) %x - Same as %D %X - Same as %T %r - 12-hour time (%I:%M:%S %p) %R - 24-hour time (%H:%M) %T - 24-hour time (%H:%M:%S) %+ - date(1) (%a %b %e %H:%M:%S %Z %Y) This method is similar to strftime() function defined in ISO C and POSIX. Several directives (%a, %A, %b, %B, %c, %p, %r, %x, %X, %E*, %O* and %Z) are locale dependent in the function. However this method is locale independent. So, the result may differ even if a same format string is used in other systems such as C. It is good practice to avoid %x and %X because there are corresponding locale independent representations, %D and %T. Examples: d = DateTime.new(2007,11,19,8,37,48,"-06:00") #=> #<DateTime: 2007-11-19T08:37:48-0600 ...> d.strftime("Printed on %m/%d/%Y") #=> "Printed on 11/19/2007" d.strftime("at %I:%M%p") #=> "at 08:37AM" Various ISO 8601 formats: %Y%m%d => 20071119 Calendar date (basic) %F => 2007-11-19 Calendar date (extended) %Y-%m => 2007-11 Calendar date, reduced accuracy, specific month %Y => 2007 Calendar date, reduced accuracy, specific year %C => 20 Calendar date, reduced accuracy, specific century %Y%j => 2007323 Ordinal date (basic) %Y-%j => 2007-323 Ordinal date (extended) %GW%V%u => 2007W471 Week date (basic) %G-W%V-%u => 2007-W47-1 Week date (extended) %GW%V => 2007W47 Week date, reduced accuracy, specific week (basic) %G-W%V => 2007-W47 Week date, reduced accuracy, specific week (extended) %H%M%S => 083748 Local time (basic) %T => 08:37:48 Local time (extended) %H%M => 0837 Local time, reduced accuracy, specific minute (basic) %H:%M => 08:37 Local time, reduced accuracy, specific minute (extended) %H => 08 Local time, reduced accuracy, specific hour %H%M%S,%L => 083748,000 Local time with decimal fraction, comma as decimal sign (basic) %T,%L => 08:37:48,000 Local time with decimal fraction, comma as decimal sign (extended) %H%M%S.%L => 083748.000 Local time with decimal fraction, full stop as decimal sign (basic) %T.%L => 08:37:48.000 Local time with decimal fraction, full stop as decimal sign (extended) %H%M%S%z => 083748-0600 Local time and the difference from UTC (basic) %T%:z => 08:37:48-06:00 Local time and the difference from UTC (extended) %Y%m%dT%H%M%S%z => 20071119T083748-0600 Date and time of day for calendar date (basic) %FT%T%:z => 2007-11-19T08:37:48-06:00 Date and time of day for calendar date (extended) %Y%jT%H%M%S%z => 2007323T083748-0600 Date and time of day for ordinal date (basic) %Y-%jT%T%:z => 2007-323T08:37:48-06:00 Date and time of day for ordinal date (extended) %GW%V%uT%H%M%S%z => 2007W471T083748-0600 Date and time of day for week date (basic) %G-W%V-%uT%T%:z => 2007-W47-1T08:37:48-06:00 Date and time of day for week date (extended) %Y%m%dT%H%M => 20071119T0837 Calendar date and local time (basic) %FT%R => 2007-11-19T08:37 Calendar date and local time (extended) %Y%jT%H%MZ => 2007323T0837Z Ordinal date and UTC of day (basic) %Y-%jT%RZ => 2007-323T08:37Z Ordinal date and UTC of day (extended) %GW%V%uT%H%M%z => 2007W471T0837-0600 Week date and local time and difference from UTC (basic) %G-W%V-%uT%R%:z => 2007-W47-1T08:37-06:00 Week date and local time and difference from UTC (extended)
See also strftime(3) and strptime.
static VALUE d_lite_strftime(int argc, VALUE *argv, VALUE self) { return date_strftime_internal(argc, argv, self, "%Y-%m-%d", set_tmx); }
Returns a date object denoting the following day.
static VALUE d_lite_next(VALUE self) { return d_lite_next_day(0, (VALUE *)NULL, self); }
Returns true if the date is Sunday.
static VALUE d_lite_sunday_p(VALUE self) { get_d1(self); return f_boolcast(m_wday(dat) == 0); }
Returns true if the date is Thursday.
static VALUE d_lite_thursday_p(VALUE self) { get_d1(self); return f_boolcast(m_wday(dat) == 4); }
Returns self;
static VALUE date_to_date(VALUE self) { return self; }
Returns a DateTime object which denotes self.
static VALUE date_to_datetime(VALUE self) { get_d1a(self); if (simple_dat_p(adat)) { VALUE new = d_lite_s_alloc_simple(cDateTime); { get_d1b(new); bdat->s = adat->s; return new; } } else { VALUE new = d_lite_s_alloc_complex(cDateTime); { get_d1b(new); bdat->c = adat->c; bdat->c.df = 0; bdat->c.sf = INT2FIX(0); #ifndef USE_PACK bdat->c.hour = 0; bdat->c.min = 0; bdat->c.sec = 0; #else bdat->c.pc = PACK5(EX_MON(adat->c.pc), EX_MDAY(adat->c.pc), 0, 0, 0); bdat->c.flags |= HAVE_DF | HAVE_TIME; #endif return new; } } }
Returns a string in an ISO 8601 format (This method doesn't use the expanded representations).
Date.new(2001,2,3).to_s #=> "2001-02-03"
static VALUE d_lite_to_s(VALUE self) { return strftimev("%Y-%m-%d", self, set_tmx); }
Returns a Time object which denotes self.
static VALUE date_to_time(VALUE self) { get_d1(self); return f_local3(rb_cTime, m_real_year(dat), INT2FIX(m_mon(dat)), INT2FIX(m_mday(dat))); }
Returns true if the date is Tuesday.
static VALUE d_lite_tuesday_p(VALUE self) { get_d1(self); return f_boolcast(m_wday(dat) == 2); }
This method is equivalent to step(max, 1){|date| …}.
static VALUE d_lite_upto(VALUE self, VALUE max) { VALUE date; RETURN_ENUMERATOR(self, 1, &max); date = self; while (FIX2INT(d_lite_cmp(date, max)) <= 0) { rb_yield(date); date = d_lite_plus(date, INT2FIX(1)); } return self; }
Returns the day of week (0-6, Sunday is zero).
Date.new(2001,2,3).wday #=> 6
static VALUE d_lite_wday(VALUE self) { get_d1(self); return INT2FIX(m_wday(dat)); }
Returns true if the date is Wednesday.
static VALUE d_lite_wednesday_p(VALUE self) { get_d1(self); return f_boolcast(m_wday(dat) == 3); }
This method is equivalent to strftime('%F').
static VALUE d_lite_iso8601(VALUE self) { return strftimev("%Y-%m-%d", self, set_tmx); }